
c© 2008 William N. Bell

ALGEBRAIC MULTIGRID FOR DISCRETE
DIFFERENTIAL FORMS

BY

WILLIAM N. BELL

B.S., Georgia Institute of Technology, 2003

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

Assistant Professor Luke N. Olson, Chair
Assistant Professor Stephen D. Bond
Professor John C. Hart
Professor Michael T. Heath

Abstract

Discrete differential forms arise in scientific disciplines ranging from compu-
tational electromagnetics to computer graphics. Examples include stable dis-
cretizations of the eddy-current problem, topological methods for sensor network
coverage, visualization of complex flows, surface parameterization, and the de-
sign of vector fields on meshes. In this thesis we describe efficient and scalable
numerical solvers for discrete k-form problems. Our approach is based on the
principles of algebraic multigrid (AMG) which is designed to solve large-scale
linear systems with optimal, or near-optimal efficiency. Since the k-form prob-
lems to be solved are arbitrarily large, the need for scalable numerical solvers is
clear.

ii

Dedicated to my parents.

iii

Acknowledgments

I am grateful to the faculty and students of the Scientific Computing Group in
the Department of Computer Science at the University of Illinois at Urbana-
Champaign for creating an atmosphere of collaboration and cohesion. In par-
ticular, I extend thanks to Luke Olson, my advisor, for his advice, insight, and
dedication to our past and ongoing research efforts. Also, kudos to Stephen
Bond for maintaining an open-door policy despite constant pestering from my-
self and others. I sincerely appreciate the friendship of my fellow Computer Sci-
ence cohorts including: Bill Cochran, Andrew Colombi, Eric Cyr, Shen Dong,
Jared Hoberock, and Jacob Schroder among many others. I thank Yizhou Yu
and Anil Hirani for their contributions to my graduate education.

I was fortunate to meet Peter Mucha in my final year of undergraduate stud-
ies at Georgia Tech. Our collaboration on granular material simulation piqued
my interest in scientific research and ultimately led to my first publication.
Without question, Peter is the individual most responsible for my decision to
pursue a graduate degree.

A special mention goes to Bruce Conover at Fort Myers High School. In-
terspersed with wit and anecdotes about Mesoamerican cultures, mathematics
with “Mr. Conover”, as he was known to his students, was the highlight of my
secondary education.

I thank my parents for their unwavering support and encouragement through-
out my twenty-two year academic career. In hindsight, I am especially grateful
for the time my mother pleaded with the high-school administration for my ad-
mission to the IB program. Agreeing that I was a “late bloomer”, she made the
case that my poor grades didn’t represent my full potential. I like to think she
was right. I have little doubt that my father’s enthusiasm for technology, which
provided me with an early exposure to programming and computers, shaped
my career choices. I am indebted to William and Valerie Bell for their support
and devotion.

Lastly, I am indebted to my wife for her indomitable spirit and cheerful de-
meanor during the last few years. A counterweight to my (equally indomitable)
cynicism, Elizabeth has been an indispensable companion through disappoint-
ments and periods of anxiety. I look forward to sharing the rest of life’s adven-
ture with you.

iv

Table of Contents

List of Tables . vii

List of Algorithms . viii

List of Abbreviations . ix

List of Symbols . x

Chapter 1 Introduction . 1
1.1 Overview of Ideas . 1
1.2 Organization . 2

Chapter 2 Algebraic Multigrid 4
2.1 Smoothed Aggregation . 5

2.1.1 Adaptive Smoothed Aggregation 9
2.2 Terminology . 10

Chapter 3 Discrete Differential Forms 11
3.1 Example . 11
3.2 Properties . 13
3.3 Focus and Applications . 14

Chapter 4 Chain Complex Method 16
4.1 Background . 16
4.2 Complex Coarsening . 17
4.3 Induced Aggregates . 18
4.4 Computing Aggregates . 20
4.5 Example . 20
4.6 Commutativity . 23
4.7 Chain Complex . 24
4.8 Smoothed Prolongators . 24
4.9 Extensions . 26
4.10 Numerical Results . 26
4.11 Prolongation Smoother Comparison 27

Chapter 5 k-Form Basis Method 31
5.1 Discrete k-Form Bases . 32

5.1.1 Discrete 0-form Bases . 32
5.1.2 Discrete 1-form Bases . 33
5.1.3 Discrete 2-form Bases . 35
5.1.4 General k-form Bases . 35
5.1.5 Dual Meshes . 36

5.2 Coarse Basis Functions . 36

v

5.3 Proposed Method . 38
5.4 Numerical Results . 42
5.5 Coordinate Systems . 45
5.6 Combinatorial Laplacians . 48

Chapter 6 Lloyd Aggregation . 51
6.1 Standard Aggregation . 51
6.2 Lloyd’s Method . 53
6.3 Proposed Method . 55

6.3.1 Implementation . 55
6.4 Results . 57

6.4.1 Methodology . 58
6.4.2 Isotropic Diffusion . 58
6.4.3 Anisotropic Diffusion . 59
6.4.4 Dual Meshes . 60
6.4.5 Discrete k-forms . 62

Chapter 7 Hodge Decomposition 66
7.1 Discrete Hodge Decomposition 66
7.2 Applications . 67
7.3 Special Case . 69
7.4 General Case . 69
7.5 Transforming Harmonic Bases . 71

Chapter 8 Sensor Networks . 73
8.1 Rips Complex . 73
8.2 Homology Bases . 75
8.3 Numerical Methods . 78
8.4 Proposed Method . 78
8.5 Numerical Results . 79

Chapter 9 Conclusions . 86
9.1 Contributions . 86
9.2 Closing Remarks . 87

References . 88

Curriculum Vitae . 91

vi

List of Tables

4.1 Two-dimensional scaling results. 28
4.2 Three-dimensional scaling results. 29
4.3 Performance of cSA on the tetrahedral rocket mesh. 29
4.4 Comparison of prolongation smoothers. 30

5.1 Scaling results of the kSA method on regular quadrilateral meshes
using 30 nodes per aggregate. 42

5.2 Scaling results of the kSA method on regular hexahedral meshes
using 100 nodes per aggregate on the finest level. 43

5.3 Performance of kSA on the tetrahedral rocket mesh using 100
nodes per aggregate. 44

5.4 Performance of kSA on a three-holed mesh using 100 nodes per
aggregate. 44

5.5 Comparison of kSA performance using different 1-form bases for
the torus mesh. 46

5.6 Adaptive kSA performance on the combinatorial Laplacians of
the unstructured tetrahedral rocket mesh. 50

8.1 Solver performance on hole-free sensor networks in 2D. 80
8.2 Solver performance on hole-free sensor networks in 3D. 81
8.3 Solver performance on 2D sensor networks in with holes. 84
8.4 Solver performance on 3D sensor networks with holes. 85

vii

List of Algorithms

2.1 multigrid cycle(A0, . . . , AN , xl, bl) 5
2.2 sa hierarchy(A,B) . 5
2.3 amg cycle(A0, . . . , AN , P0, . . . , PN−1, xl, bl) 9
2.4 sa solver(A,B, x, b, tolerance) 9
4.1 coarsen complex(D−1,D0, . . . ,DN) 18
4.2 induced aggregates(Pk,Dk,Dk+1) 19
4.3 dependent rows(G,D, i) . 21
6.1 standard aggregation(S) . 52
6.2 modified bellman ford(S,Centers) 56
6.3 lloyd aggregation(S,Centers) 57
7.1 localize basis(H,m) . 72

viii

List of Abbreviations

AMG Algebraic Multigrid

SA Smoothed Aggregation

WPD Work Per Digit of Accuracy

OC Operator Complexity

ODE Ordinary Differential Equation

PDE Partial Differential Equation

ix

List of Symbols

∂ Boundary operator

H Space of Harmonic forms

d Exterior derivative

D Discrete exterior derivative

δ Codifferential (adjoint of d)

∗ Hodge star

M Discrete Hodge star (k-form innerproduct)

∆ Laplacian operator

∇ Gradient operator

∇· Divergence operator

∇× Curl operator

I Interpolation map from discrete cochains to k-forms

R de Rham map from smooth k-forms to discrete cochains

P Prolongation operator

S Prolongation smoother

R Range space

img Image

span Span of a basis

diag Diagonal of a matrix

nnz Number of nonzeros in a sparse matrix

x

Chapter 1

Introduction

Discrete differential forms arise in scientific disciplines ranging from compu-
tational electromagnetics to computer graphics. Examples include stable dis-
cretizations of the eddy-current problem [46, 12, 4], topological methods for
sensor network coverage [16], visualization of complex flows [36, 41], surface pa-
rameterization [25], and the design of vector fields on meshes [21]. In this thesis
we describe efficient and scalable numerical solvers for discrete k-form problems.
Our approach is based on algebraic multigrid (AMG) [42] principles, which are
designed to solve large-scale linear systems with optimal, or near-optimal effi-
ciency. Since the k-form problems to be solved are arbitrarily large, the need
for scalable numerical solvers is clear.

1.1 Overview of Ideas

This thesis develops efficient multigrid solvers for discrete differential forms.
The main contributions of the thesis are two multigrid solvers, the chain com-
plex method (cSA) and the k-form basis method (kSA). Additionally, we develop
Lloyd aggregation, a novel aggregation algorithm appropriate for k-form prob-
lems. Furthermore, we advance the computation of discrete Hodge decomposi-
tions using the proposed solvers, with application to a broad class of mimetic
discretizations [10] and purely topological problems. Finally, we consider the
sensor network coverage problem and introduce a solver that significantly im-
proves upon previous methods.

The chain complex method, which coarsens discrete forms in a manner that
preserves their differential structure, is a natural extension of the work of Re-
itzinger and Schöberl [37] from 1-forms to general k-forms. Further general-
izations of the basic method to improved interpolation operators [29] and the
cochain complex are facilitated by examining the coarsening procedure in an
algebraic setting.

Our second contribution, the k-form basis method (kSA), is motivated by
the observation that performance of the cSA method degrades when moving
from structured to unstructured meshes. Inspired by the work of Bochev et
al. [8], kSA uses a set of k-form basis functions to guide the construction of
interpolation operators. The primary distinction between the cSA and kSA

1

methods is that the former maintains the differential structure throughout the
multigrid hierarchy while the latter ensures that certain k-forms are accurately
represented at all levels.

Since the matrix structure of problems arising in k-form discretizations dif-
fers from that of conventional finite elements, a novel aggregation algorithm
based on Lloyd’s method is introduced. Lloyd aggregation facilitates the efficient
construction of the kSA multigrid hierarchy. Furthermore, Lloyd aggregation
supports a time-memory tradeoff between the cost of the multigrid hierarchy
and the efficiency of the resulting multigrid cycle.

1.2 Organization

Chapter 2 introduces the general principles of algebraic multigrid and explains
standard multigrid terminology. The construction of algebraic multigrid solvers
based on smoothed aggregation is described in detail. An overview of discrete
differential forms is presented in Chapter 3. Here, the relationship between
continuous and discrete k-forms and their associated operators is explored and
the scope of problems to be considered is established.

Using the discrete de Rham complex, Chapter 4 develops the chain complex
method (cSA) for solving k-form Laplacians. The cSA method creates a hier-
archy of progressively coarser levels that preserve the structure of the de Rham
complex. In particular, the discrete derivative operators within each level of
the hierarchy form a chain complex. Furthermore, interpolation operators that
act between levels of the hierarchy and commute with the coarse- and fine-
level discrete derivatives are constructed. The interpolation operators serve as
the tentative prolongators within the smoothed aggregation methodology. Fi-
nally, we demonstrate how cSA is used to efficiently solve linear systems with
the discrete k-form Laplacian operators. This chapter includes the results of a
previously published work [6].

Chapter 5 discusses the primary deficiency of the chain complex method.
The k-form basis method (kSA) addresses this problem by ensuring that a k-
form basis is accurately represented by the multigrid prolongators. Coarse basis
functions of the cSA and kSA methods are compared and a comparative numer-
ical study is conducted. Performance of the kSA method is shown to surpass
that of the cSA method in the context of problems discretized on unstructured
meshes. An adaptive kSA method and its application to combinatorial Lapla-
cians are also considered.

A novel aggregation method, Lloyd aggregation, is the subject of Chapter 6.
Lloyd aggregation is motivated by a need to aggregate the degrees of freedom
in k-form problems efficiently. A numerical study is conducted comparing the
performance of Lloyd aggregation to the standard algorithm. When applied to
k-form problems the proposed method exhibits superior performance. Further-
more, Lloyd aggregation supports a time-memory tradeoff between work per

2

digit of accuracy and operator complexity. Aggregation in the kSA method
utilizes the proposed algorithm.

The discrete Hodge decomposition is introduced in Chapter 7. Applica-
tion of the discrete Hodge decomposition to fluid simulation, visualization, and
topology are discussed. A distinction is drawn between the non-physical but
practically important “special” case using a trivial innerproduct and “general”
case which admits an arbitrary innerproduct. The cohomology basis, or basis
for the harmonic forms on a manifold, is shown to play a central role in the
Hodge decomposition. Equations arising in the discrete Hodge decomposition
are solved with the cSA and kSA methods.

Chapter 8 discusses the sensor network coverage problem and introduces
a coordinate-free approach to its solution. The coordinate-free approach re-
duces the geometric coverage problem to a problem of computational topology.
Here, the Rips complex, which is constructed using only communication between
nearby sensors, is the topological entity of interest. Determining sufficient con-
ditions on network coverage reduces to computing nullvectors of combinatorial
Laplacians associated to the Rips complex. The proposed multigrid solver is
shown to offer profound improvements over previously applied numerical meth-
ods. Finally, the main contributions of the thesis are reiterated in Chapter
9.

3

Chapter 2

Algebraic Multigrid

Large-scale problems in the computational sciences necessitate efficient numer-
ical solvers. Multigrid methods are designed to solve systems with optimal time
(and space) complexity. Specifically, the number of operations needed to solve
a problem scales linearly with the size of the problem. Although the multigrid
methodology may be applied to linear and nonlinear equations1, in this thesis
we restrict our attention to the linear case Ax = b.

The fundamental principle of multigrid is the complementary relationship
between relaxation and coarse-grid correction. When applied to a linear system,
relaxation methods (e.g. Gauss-Seidel iteration) rapidly reduce high-frequency
or oscillatory errors in the approximate solution. After several applications of
the relaxation procedure the approximate solution consists primarily of low-
frequency or slow-to-converge error components that are not effectively reduced
by further relaxation. However, when these components are restricted to a
coarser grid they become oscillatory and are exposed to relaxation applied to
the coarser problem. The approximate solution on the coarse grid is then in-
terpolated back to the finer grid to update the fine-grid approximate solution.
This procedure is applied recursively to form a hierarchy of grids until the coars-
est problem can be solved exactly. The processes of relaxation and coarse-grid
correction comprise the multigrid cycle. The efficiency of the multigrid cycle
depends on the effectiveness of relaxation on oscillatory error modes and the ac-
curacy with which slow-to-converge error components are represented on coarser
grids. Algorithm 2.1 describes the steps of a multigrid V-cycle.

In geometric multigrid [42] coarser grids are determined by a predefined ge-
ometric simplification. For instance, if a problem is discretized on a regular grid
with N subdivisions in each dimension, a natural geometric coarsening has N/2
subdivisions in each dimension. Restriction and interpolation are then defined
in a manner consistent with the coarsening of the domain. Often, the coarse
level equations correspond to coarser discretizations of the initial (continuous)
problem.

In contrast, algebraic multigrid (AMG) [38, 44] applies multigrid principles
directly to the linear system of the discrete problem Ax = b. In place of a fixed
geometric coarsening, AMG develops coarse grids2 to accurately capture relax-

1e.g. the Full Approximation Scheme (FAS).
2Although not proper grids, the same terminology is still used in AMG.

4

Algorithm 2.1: multigrid cycle(A0, . . . , AN , xl, bl)

1 i f l = N
2 return Solve (Al ,bl)
3 else
4 xl ⇐ Presmooth(Al, xl, bl)
5 rl ⇐ bl −Alxl

6 bl+1 ⇐ R e s t r i c t (rl)
7 xl+1 ⇐ 0
8 xl+1 ⇐m u l t i g r i d c y c l e (A0, . . . , AN , xl+1, bl+1)
9 xl ⇐ xl + I n t e r p o l a t e (xl+1)

10 xl ⇐ Postsmooth(Al, xl, bl)
11 return xl

12 end

Algorithm 2.2: sa hierarchy(A,B)

1 A0 ⇐ A
2 B0 ⇐ B
3 for n = 0, 1, . . . , N
4 Aggn ⇐ Aggregate(An)
5 Tn, Bn+1 ⇐ FitCandidates(Aggn, Bn)
6 Pn ⇐ SmoothProlongator(An, Tn)
7 An+1 ⇐ PT

n AnPn

8 end
9 return A0, . . . , AN , P0, . . . , PN−1

ation’s slow-to-converge modes (so-called algebraically smooth errors). AMG
methods may be applied to anisotropic problems and problems discretized on
unstructured meshes without making special considerations. Furthermore, one
AMG method may solve discrete equations for a number of different PDEs with
minimal modification. For problems amenable to geometric multigrid, a special-
purpose geometric method will generally outperform an algebraic method on
the basis of computational efficiency. However, in practice, the flexibility, ro-
bustness, and breadth of algebraic solvers often outweighs runtime efficiency
considerations.

2.1 Smoothed Aggregation

In this section we briefly outline the standard components of AMG based on
smoothed aggregation (SA)[44] using Algorithm 2.2 as a reference. Once estab-
lished, the multigrid methods k-form problems described in Chapters 4 and 5
are presented as extensions of the smoothed aggregation approach.

In order to construct a multigrid hierarchy with SA one requires a set of
K near-nullspace candidates b0, b1, . . . , bK−1 in addition to the matrix A of the
linear system. While the number and character of the near-nullspace vectors

5

Figure 2.1: Typical aggregates on an unstructured triangle mesh.

vary from problem to problem their role is always the same: representing locally
smooth functions. For instance, when solving the Poisson problem −∆u = f

a single constant candidate vector b0 = [1, 1, . . . , 1]T suffices to describe locally
smooth functions. In linearized elasticity, the rigid-body modes (translations
and rotations) comprise the near-nullspace modes for a total of 3 vectors in
two-dimensions and 6 vectors in three-dimensional elasticity. In the absence
of Dirichlet boundary conditions, the candidates constitute a nullspace basis of
their respective problems. By convention, the K candidate vectors are assem-
bled into the columns of a block matrix B = [b0, b1, . . . , bK−1]. In subsequent
steps, the candidate vectors will be used to ensure that interpolation accurately
captures non-oscillatory error modes.

In the first step of SA, the structure of A is used to decompose the computa-
tional domain into aggregates such as those shown in Figure 2.1. In the simplest
case, aggregates are formed based on the nonzero pattern in A alone. However,
for many problems it is necessary to apply a strength-of-connection measure
before aggregation. In this case, only strongly connected degrees of freedom
are aggregated together. Intuitively, strong connections are those along which
algebraically smooth error varies slowly. The development of robust strength-
of-connection measures remains an active research area [39].

In Algorithm 2.2 the result of aggregation on the n-th level is denoted Aggn.
Sparse matrix Aggn maps degrees of freedom to their corresponding aggregates.
Specifically, the value of Aggn(i, j) is one if the i-th degree of freedom belongs
to the j-th aggregate. Otherwise, Aggn(i, j) takes the value zero. For example,

6

Figure 2.2: One dimensional mesh with two aggregates.

the matrix

Agg0 =



1 0
1 0
1 0
0 1
0 1
0 1


, (2.1)

encodes the aggregation in Figure 2.2.
The sparsity pattern of Aggn determines the support of the coarse-level basis

functions in Tn, the tentative prolongator. Additionally, the tentative prolonga-
tor Tn and coarse-level candidates Bn+1 produced by FitCandidates are chosen
to satisfy TnBn+1 = Bn, i.e. the tentative prolongator exactly interpolates the
fine-level candidates. When multiple candidate vectors are used, the columns of
Tn are orthonormalized over each aggregate. Specifically, a QR decomposition
of the K candidate vectors restricted to each aggregate is computed. Continuing
the example in Figure 2.2 with fine-level candidates

B0 =



1 0
1 1
1 2
1 3
1 4
1 5


, (2.2)

the corresponding tentative prolongator and coarse-level candidates are

T0 =



0.5774 −0.7071 0.0000 0.0000
0.5774 0.0000 0.0000 0.0000
0.5774 0.7071 0.0000 0.0000
0.0000 0.0000 0.5774 −0.7071
0.0000 0.0000 0.5774 0.0000
0.0000 0.0000 0.5774 0.7071


, B1 =


1.7321 1.7321
0.0000 1.4142
1.7321 6.9282
0.0000 1.4142

 .

(2.3)

7

Figure 2.3: Unsmoothed coarse basis functions of the tentative prolongator T0.

The four coarse-level basis functions of T0 are illustrated in Figure 2.3.
At this point, one option is to take Pn = Tn and construct an unsmoothed ag-

gregation multigrid hierarchy. For instance, the two level method A0 = A,A1 =
TT

0 AT0 has the property that error components which lie in the span of the
candidate vectors over each aggregate are completely annihilated by a multigrid
cycle. Unfortunately, this property alone does not provide optimal multigrid
convergence and therefore a prolongation smoother is applied to the tentative
prolongator before forming the next coarser level.

Prolongation smoothing, represented by SmoothProlongator in Algorithm
2.2, improves the approximation of algebraically smooth errors by the final
prolongator Pn. Smoothing is accomplished by computing the sparse matrix-
matrix product (I − SnAn)Tn, where Sn determines the kind of smoothing.
Possible implementations for Sn include Richardson Sn = ωI, Jacobi Sn =
ω diag(A)−1, and polynomial smoothers Sn = p(A) [3]. Prolongation smoothing
on the column tj = T (:, j) of the tentative prolongator (i.e. a coarse basis
function), which results in the smoothed column (I − SnAn)tj , is equivalent to
applying one iteration of the stationary relaxation method tj ⇐ tj +Sn(b−Antj)
on the linear system Atj = 0. In other words, the coarse basis functions of
the smoothed prolongator Pn are simply relaxed versions of the tentative basis
functions.

As a general principle, smoother coarse basis functions better approximate
algebraically smooth error and therefore provide superior multigrid convergence.
However, prolongator smoothing broadens the support of each coarse basis func-
tion, which in turn contributes additional nonzeros (or fill) to the smoothed
prolongator Pn and the coarse level system PT

n AnPn. Therefore, the total work
per digit (WPD) of accuracy of the resultant multigrid cycle will not necessarily
improve with more aggressive prolongator smoothing.

In SA, the procedures Restrict and Interpolate of the generic multi-
grid cycle in Algorithm 2.1 are implemented by PT

k and Pk respectively. Algo-
rithm 2.3 demonstrates this specialized multigrid cycle. Finally, the hierarchy
construction and solve phases are combined in Algorithm 2.4. Provided with a
matrix of near-nullspace candidates B = [b0, b1, . . . , bK−1], procedure sa solver

8

Algorithm 2.3: amg cycle(A0, . . . , AN , P0, . . . , PN−1, xl, bl)

1 i f l = N
2 return Solve (Al ,bl)
3 else
4 xl ⇐ Presmooth(Al, xl, bl)
5 rl ⇐ bl −Alxl

6 bl+1 ⇐ PT
k rl

7 xl+1 ⇐ 0
8 xl+1 ⇐amg cycle(A0, . . . , AN , P0, . . . , PN−1, xl+1, bl+1)
9 xl ⇐ xl + Pkxl+1

10 xl ⇐ Postsmooth(Al, xl, bl)
11 return xl

12 end

Algorithm 2.4: sa solver(A,B, x, b, tolerance)

1 A0, . . . , AN , P0, . . . , PN−1 ⇐ s a h i e r a r c h y (A,B)

2 while
∣∣∣∣∣∣∣∣b−Ax∣∣∣∣∣∣∣∣ > tolerance

3 x⇐ amg cycle(A0, . . . , AN , P0, . . . , PN−1, x, b)
4 end
5 return x

solves the linear system Ax = b to a given residual tolerance.

2.1.1 Adaptive Smoothed Aggregation

The construction of a standard smoothed aggregation hierarchy, embodied by
Algorithm 2.2, requires a matrix of near-nullspaces candidates. When this in-
formation is unavailable, the adaptive smoothed aggregation (αSA) method [14]
computes a set of candidates automatically.

The αSA algorithm develops a set of candidates by applying several itera-
tions of the method to the system Ax = 0 with a random initial vector. The
result x̃, if nonzero, is a vector that is not effectively reduced by the existing
multigrid cycle. Introducing x̃ into the range of interpolation – i.e. augmenting
the columns of B = [B, x̃] – ensures that the new cycle annihilates x̃. The new
cycle is then applied to the system Ax = 0 to discover additional candidate
vectors until a limit on the number of candidates is reached or the method is
found to effectively reduce all error modes.

Since the αSA algorithm adds considerable cost to the hierarchy construction
phase, it is only used when a set of suitable near-nullspace candidates is not
available. Furthermore, the number of candidate vectors required for effective
multigrid cycling performance generally exceeds the number of vectors in the
standard method. For instance, whereas SA requires three candidates for 2D
linear elasticity problems, αSA requires as many as 5 to recover the same rate

9

of convergence [14]. Despite the additional computational burden, the adaptive
smoothed aggregation methodology is useful and constitutes a true black box
method.

2.2 Terminology

When comparing the performance of algebraic multigrid methods there are sev-
eral metrics to consider. The operator complexity (OC) is a measure of the size
of the complete hierarchy relative to the size of the initial matrix. Given the
sequence of matrices A0, A1, . . . , AN in the multigrid hierarchy, the operator
complexity is computed as

∑N
i=0 nnz(Ai)/ nnz(A0), where nnz is the number

of nonzeros in the matrix. Operator complexity is an approximate measure of
the memory and setup cost of a hierarchy. Since operator complexity varies by
problem, discretization, and dimension it is difficult to define an ideal value.
Generally speaking, operator complexities less than 2.0 are acceptable, while
considerably larger values are less desireable and potentially problematic.

Related to operator complexity is the work per digit of accuracy (WPD) of
the solver. As the name suggests, WPD measures the number of floating point
operations required to reduce the error by a factor of 10. Since the true error is
not typically available, we measure the reduction in the residual norm ||b−Ax||.
The WPD is calculated as

log(0.1)
log(C)

N∑
i=0

Ri/R (2.4)

where Ri is the total number of floating point operations used during relaxation
on level i, R is the cost of a single relaxation pass on the finest level, and C is the
average convergence ratio3 of the method. For instance, if a multigrid V-cycle
with a single iteration of Jacobi relaxation during pre- and post-smoothing is
applied to a hierarchy with an operator complexity of 1.5 to produce a conver-
gence ratio of 0.1, then the WPD is 3.0. If, instead, two iterations of Jacobi
relaxation during pre- and post-smoothing on the same hierarchy produced a
convergence ratio of 0.1, then the corresponding WPD is 6.0.

3Geometric mean of the per-iteration convergence ratios.

10

Chapter 3

Discrete Differential Forms

Discrete differential forms arise in scientific disciplines ranging from compu-
tational electromagnetics to computer graphics. Examples include stable dis-
cretizations of the eddy-current problem [46, 12, 4], topological methods for
sensor network coverage [16], visualization of complex flows [36, 41], surface pa-
rameterization [25], and the design of vector fields on meshes [21]. This Chapter
provides an overview of discrete forms and their properties through concrete ex-
amples. We refer the interested reader to [28, 10, 17] for additional background
information and motivation.

3.1 Example

Consider the three element simplicial mesh depicted in Figure 3.1 with vertices,
edges, and triangles enumerated as shown. Note that the edges and triangles
are oriented. In general, an oriented p-simplex (or face) is represented by an
ordered tuple of indices (s0, s1, . . . , sp). In this example, edge 4 has the unique
representation (2, 3) while triangle 1 is equivalently represented by either (1, 2, 3)
or (3, 1, 2) or (2, 3, 1). The representation of an oriented simplex is unique up
to an even permutation of its indices.

In the smooth theory the exterior derivative d generalizes the vector calculus
operations∇·,∇, and∇× to manifolds in non-Euclidean spaces. Given a mesh
with oriented faces, the discrete k-form derivative, denoted Dk, is constructed
to implement a discrete analog of the exterior derivative. For this example, the

Figure 3.1: Enumeration of nodes (left), oriented edges (center), and oriented
triangles(right) for a simple triangle mesh.

11

Figure 3.2: Forms I0α0, I1D0α
0, and I1β1 where I denotes Whitney interpola-

tion. The left and center figures illustrate property 3.4. Whether the derivative
is applied before or after interpolation, the result is the same.

sparse matrices

D−1 =


0
0
0
0
0

 , D0 =



−1 1 0 0 0
−1 0 0 1 0

0 −1 1 0 0
0 −1 0 1 0
0 0 −1 1 0
0 0 −1 0 1
0 0 0 −1 1


, (3.1)

D1 =

 1 −1 0 1 0 0 0
0 0 1 −1 1 0 0
0 0 0 0 −1 1 −1

 , D2 =
[
0 0 0

]
, (3.2)

implement the discrete k-form derivative operators. Each row of the k-th deriva-
tive operator records the relative orientation between the boundary of a k + 1-
dimensional face and its k-dimensional subfaces. In the boundary of triangle 0,
edges 0 and 3 occur with positive orientation while edge 1 appears with negative
orientation. Hence it follows that D(0, 0) = D(0, 3) = 1 and D(0, 1) = −1. In
fact, the discrete derivative is defined to be the adjoint of the corresponding
boundary operator[28], i.e. <Du, v > = <u, ∂k+1v >. By convention D−1 and
D2 are included to complete the sequence.

Discrete derivatives act on discrete k-forms which are represented as column
vectors with real values for each of the k-simplices in the mesh. The entries of
a discrete k-form, denoted αk, represent integrated quantities. To discretize
a continuous scalar field, or 0-form, point samples at each of the vertices are
computed to determine the entries of the discrete 0-form. Likewise, the values
of a discrete 1-form are computed by integrating a continuous 1-form along the
edges of the mesh. This method of discretizing smooth k-forms is called the
de Rham map [45, 10, 28] and is denoted R.

The reverse process, interpolating discrete k-forms over a mesh, is denoted

12

I. Interpolated fields corresponding to k-forms α0 = [0, 1, 2, 1, 2]T , the gradient
D0α

0 = [1, 1, 1, 0,−1, 0, 1], and another 1-form β1 = [1, 0, 1, 0, 0, 1, 0] are shown
in Figure 3.2. In this example, Whitney forms [45, 13] have been used to de-
fine I. Similar interpolation methods exist for hexahedral [11] and polyhedral
elements [24].

3.2 Properties

Discretizations that mimic the structure of the exterior calculus, so-called mim-
etic methods, retain properties of the smooth theory [28, 10]. In particular, the
de Rham complex formed by the discrete derivative operators,

0
D−1- Ω0

d

D0 - Ω1
d

D1 - . . . ΩN
d

DN - 0, (3.3)

is a chain complex, i.e. img(Dk) ⊂ ker(Dk+1) or equivalently Dk+1Dk = 0. The
corresponding result in the smooth theory, i.e. dk+1dk = 0, is responsible for
the vector calculus identities ∇ ·∇× = 0 and ∇×∇ = 0 in three-dimensional
Euclidean space. Mimicking this property of the smooth theory is essential when
considering discretizations of the eddy-current problem [4].

The interpolated forms I0α0 and I1D0α
0 depicted in Figure 3.2 illustrate

commutativity of the interpolation and derivative operations. This relationship
is depicted as

Ωk dk- Ωk+1

Ωk
d

Ik

6

Dk- Ωk+1
d

Ik+1

6

(3.4)

where Ωk and Ωk
d denote the spaces of smooth differential k-forms and discrete

k-forms respectively. When computing the bilinear form

<dkIku
k,dkIkv

k>, (3.5)

we exploit the relationship in Diagram 3.4 to substitute the simpler expression

<Ik+1Dku
k, Ik+1Dkv

k>= DT
k Mk+1Dk, (3.6)

using the mass matrix Mk+1 =<Ik+1, Ik+1>.
The de Rham map Rk, which discretizes smooth k-forms, also commutes

13

with the exterior derivative:

Ωk dk- Ωk+1

Ωk
d

Rk

? Dk- Ωk+1
d

Rk+1

?

(3.7)

One practical benefit of Diagram 3.7 is the ability to discretize forms using
the gradient of a lower-dimensional form. For instance, the discrete 1-form
corresponding to 1dx may be computed by sampling the x-coordinate at each
of the vertices of a mesh (a discrete 0-form) and then applying D0 to the result.

3.3 Focus and Applications

In this thesis we consider we consider solving discretizations of problems of the
form,

δdαk = βk, (3.8)

where d denotes the exterior derivative and δ the codifferential relating smooth
k-forms α and β. For k = 0, 1, 2, δd is also expressed as ∇ ·∇, ∇×∇×, and
∇∇· respectively. We refer to operator δd generically as a Laplacian, although
it does not correspond to the Laplace-de Rham operator ∆ = dδ + δd except
for the case k = 0. We assume that (3.8) is discretized with mimetic first-order
elements such as Whitney forms [45, 13] on simplicial meshes or the analog on
hexahedral [11] or polyhedral elements [24].

In general we use Ik to denote the map from discrete k-forms (cochains)
to their respective finite elements. Such discretizations give rise to a discrete
exterior k-form derivative Dk and discrete k-form innerproduct

Mk(i, j) =<Ikei, Ikej>, (3.9)

which allows implementation of (3.8) in weak-form as

DT
k Mk+1Dkx = b, (3.10)

under the additional assumption that d and I satisfy Diagram 3.4. We con-
sider solving (3.10) on structured or unstructured meshes of arbitrary dimension
and element type, provided that the discretization satisfies the aforementioned
properties.

In Chapter 7 we discuss computing Hodge decompositions of discrete k-forms
with the proposed methods. The Hodge decomposition is a fundamental tool
in both pure and applied mathematics that exposes topological information
through differential forms. For example, the two harmonic 1-forms shown in

14

Figure 3.3: The two harmonic 1-forms of a rocker arm surface mesh.

Figure 3.3 exist because the manifold has genus 1. When computing discrete
Hodge decompositions, we encounter linear systems with matrices of the form

DT
k Dk, DkDT

k , DkM−1
k+1DT

k , (3.11)

in addition to DT
k Mk+1Dk of Equation 3.10.

The efficient solution of discrete k-form Laplacians has substantial utility in
computational topology, where, for instance, sufficient conditions on the cover-
age of sensor networks reduce to the discovery of harmonic forms on the sim-
plicial Rips complex [16]. In this application, we encounter the combinatorial
Laplacian

∆k = Dk−1DT
k−1 + DT

k Dk, (3.12)

and determine whether it has a non-trivial nullspace. We explore efficient solvers
for this problem in Chapter 8.

15

Chapter 4

Chain Complex Method

This chapter develops the chain complex method (cSA) for solving k-form prob-
lems. The cSA method creates a hierarchy of progressively coarser levels that
preserve the structure of the de Rham complex (cf. Figure 3.3). Specifically,
the discrete derivative operators within each level of the hierarchy form a chain
complex (Section 3.2). Furthermore, interpolation operators that act between
levels of the hierarchy and commute with the coarse- and fine-level discrete
derivatives are constructed. The interpolation operators serve as the tentative
prolongators within the smoothed aggregation methodology. Finally, we demon-
strate how cSA is used to efficiently solve linear systems with the discrete k-form
Laplacian operators

DT
k Dk, DT

k Mk+1Dk, DkDT
k , (4.1)

that appear in the discrete Hodge decompositions discussed in Chapter 7.

4.1 Background

There is significant interest in efficient solution methods for Maxwell’s eddy-
current problem

∇×∇× ~E + σ ~E = ~f. (4.2)

In particular, recent approaches focus on multilevel methods for both structured
and unstructured meshes [27, 5, 37, 29]. Scalar multigrid performs poorly on
edge element discretizations of (4.2) since error modes that lie in the kernel of
∇ ×∇× are not effectively damped by standard relaxation methods. Fortu-
nately, the problematic modes are easily identified by the range of the discrete
gradient operator D0, and an appropriate hybrid smoother [27, 5] can be con-
structed. An important property of these multigrid methods is commutativity

16

between coarse and fine finite element spaces. The relationship is described as

Ω0
d

D0 - Ω1
d

Ω̂0
d

P0

6

D̂0 - Ω̂1
d

P1

6

(4.3)

where Ω̂k
d is the space of coarse discrete k-forms, D̂0 the coarse gradient operator,

and P0 and P1 are the nodal and edge prolongation operators respectively.
Combining (4.3) with (3.4) yields the same result for the corresponding fine and
coarse finite element spaces.

Reitzinger and Schöberl [37] describe an algebraic multigrid method for solv-
ing (4.2) on unstructured meshes. In their method, property (4.3) is maintained
by choosing nodal aggregates and using these aggregates to obtain compatible
edge aggregates. The nodal and edge aggregates give rise to piecewise-constant
prolongators P0 and P1, which can be smoothed to achieve better multigrid
convergence rates [29] while retaining property (4.3).

The method we present can be viewed as a natural extension of Reitzinger
and Schöberl’s work from 1-forms to general k-forms. Commutativity of the
coarse and fine de Rham complexes is maintained for all k-forms, and their
associated finite element spaces IkΩk

d ⊂ Ωk. The relationship is described by

Ω0
d

D0 - Ω1
d

D1 - Ω2
d . . . Ωk

d

Dk- Ωk+1
d

Ω̂0
d

P0

6

D̂0 - Ω̂1
d

P1

6

D̂1 - Ω̂2
d

P2

6

. . . Ω̂k
d

Pk

6

D̂k- Ω̂k+1
d

Pk+1

6

(4.4)

where Pk denotes either the tentative prolongator Pk or smoothed prolongator
SkPk.

4.2 Complex Coarsening

In this section we describe the construction of tentative prolongators Pk and
coarse operators D̂k which satisfy (4.4). In practice, the two-level commutativity
depicted in (4.4) is extended recursively for use in a multilevel method. Also, it
is important to note that when solving (3.10) for a specific k, it is not necessary
to coarsen the entire complex.

As in [37], we presume the existence of a nodal aggregation algorithm which
produces a piecewise-constant tentative prolongator P0. This procedure, called
aggregate nodes in Algorithm 4.1, is fulfilled by either Smoothed Aggrega-
tion [44] or a graph partitioner on matrices DT

0 M1D0 or DT
0 D0. Ideally, the

17

Algorithm 4.1: coarsen complex(D−1,D0, . . . ,DN)

1 P0 ⇐ aggregate nodes (D0, . . .)
2 for k = 0 to N − 1
3 Pk+1 ⇐ i nduced aggregate s (Pk,Dk,Dk+1)
4 D̂k ⇐ (PT

k+1Pk+1)−1PT
k+1DkPk

5 end
6 D̂−1 ⇐ PT

0 D−1

7 D̂N ⇐ DNPN

8 return P0, P1, . . . , PN and D̂−1, D̂0, . . . , D̂N

nodal aggregates are contiguous and have a small number of interfaces with
other aggregates.

4.3 Induced Aggregates

The key concept in [37], which we apply and extend here, is that nodal aggre-
gates induce edge aggregates; we denote P1 as the resulting edge aggregation
operator. As depicted in Figure 4.1, a coarse edge exists between two coarse
nodal aggregates when any fine edge joins them. Multiple fine edges between
the same two coarse nodal aggregates interpolate from a common coarse edge
with weight 1 or −1 depending on their orientation relative to the coarse edge.
The coarse nodes and coarse edges define a coarse derivative operator D̂0 which
satisfies diagram (4.3).

We now restate the previous process in an algebraic manner that generalizes
to arbitrary k-forms. Given P0 as before, form the product D = D0P0 which
relates coarse nodes to fine edges. Observe that each row of D corresponds to
a fine edge and each column to a coarse node. Notice that the i-th row of D
is zero when the endpoints of fine edge i lie within the same nodal aggregate.
Conversely, the i-th row of D is nonzero when the endpoints of fine edge i lie in
different nodal aggregates. Furthermore, when two nonzero rows are equal up
to sign (i.e. linearly dependent), they interpolate from a common coarse edge.

Therefore, the procedure of aggregating edges reduces to computing sets of
linearly dependent rows in D. Each set of dependent rows yields a coarse edge
and thus a column of P1. In the general case, sets of dependent rows in D = DkPk

are identified and used to produce Pk+1. The process can be repeated to coarsen
the entire de Rham complex. Alternatively, the coarsening can be stopped at
a specific k < N . In Section 4.6 we discuss the coarse derivative operator
D̂k ⇐ (PT

k+1Pk+1)−1PT
k+1DkPk and show that it satisfies diagram (4.4).

Intuitively, linear dependence between rows in D = DkPk indicates redun-
dancy created by operator Pk. Aggregating dependent rows together removes
redundancy from the output of D and compresses the remaining degrees of free-
dom into a smaller set of variables. By construction, the tentative prolongators

18

Figure 4.1: Nodal aggregates (upper left) determine coarse edges (upper right)
through the algorithm induced aggregates. Fine edges crossing between node
aggregates interpolate from the corresponding coarse edge with weight 1 or −1
depending on their relative orientation. Edges contained within an aggregate
do not correspond to any coarse edge and receive weight 0. These weights are
determined by lines 10-13 of induced aggregates.

Algorithm 4.2: induced aggregates(Pk,Dk,Dk+1)

1 D⇐ DkPk

2 G⇐ DT
k+1Dk+1

3 V ⇐ {}
4 n⇐ 0
5

6 for i in rows(D) such that D(i, :) 6= 0
7 i f i 6∈ V
8 An ⇐ dependent rows(G,D, i)
9 for j ∈ An

10 i f D(i, :) = D(j, :)
11 Pk+1(j, n)⇐ 1
12 else
13 Pk+1(j, n)⇐ −1
14 end
15 end
16 n⇐ n+ 1
17 V ⇐ V ∪An

18 end
19 end
20 return Pk+1

19

Figure 4.2: Example where contiguous (center) and non-contiguous (right) ag-
gregation differs. Contiguous aggregates are reflected through our choice of G
defined in induced aggregates and later used in dependent rows.

have full column rank and satisfy

R(DkPk) ⊂ R(Pk+1) (4.5)

where R(A) denotes the range of matrix A. Note that property (4.5) is clearly
necessary to satisfy diagram (4.4).

Using disjoint sets of dependent rows A0,A1,. . ., the function induced agg-

regates constructs the aggregation operator Pk+1 described above. Non-zero
entry Pk+1(i, j) indicates membership of the i-th row of D—i.e. the i-th k + 1-
dimensional element—to the j-th aggregate Aj .

4.4 Computing Aggregates

For a given row index i, the function dependent rows constructs a set of rows
that are linearly dependent to D(i, :). In the matrix graph of G, a nonzero
entry G(i, j) indicates that the k+ 1-dimensional elements with indices i and j
are upper-adjacent [33]. In other words, i and j are both faces of some k + 2
dimensional element. For example, two edges in a simplicial mesh are upper-
adjacent if they belong to the same triangle. All linearly dependent rows that
are adjacent in the matrix graph of G are aggregated together. This construction
ensures that the aggregates produced by dependent rows are contiguous. As
shown in Figure 4.2, such aggregates are more natural than those that result
from aggregating all dependent rows together (i.e. using G = D DT

).

4.5 Example

In this section we describe the steps of our algorithm applied to the three element
simplicial mesh depicted in Figure 3.1. Matrices D−1,D0,D1, and D2, shown
in Section 3.1, are first computed and then passed to coarsen complex. The
externally-defined procedure aggregate nodes is then called to produce the

20

Algorithm 4.3: dependent rows(G,D, i)

1 Q⇐ {i}
2 A⇐ {i}
3 while Q 6= {}
4 j ⇐ pop(Q)
5 Q⇐ Q \ {j}
6 for k such that G(j, k) 6= 0
7 i f k 6∈ A and D(i, :) = ±D(k, :)
8 A⇐ A ∪ {k}
9 Q⇐ Q ∪ {k}

10 end
11 end
12 end
13 return A

piecewise-constant nodal aggregation operator

P0 =


1 0 0
1 0 0
0 1 0
1 0 0
0 0 1

 (4.6)

whose corresponding aggregates are shown in Figure 4.3. At this stage of the
procedure, a more general nodal problem DT

0 M1D0 may be utilized in deter-
mining the coarse aggregates. Next, induced aggregates is invoked with ar-
guments P0,D0,D1, and the sparse matrix

D = D0P0 =



0 0 0
0 0 0
−1 1 0

0 0 0
1 −1 0
0 −1 1
−1 0 1


, (4.7)

is constructed. Recall from Section 4.3 that the rows of D are used to determine
the induced edge aggregates. The zero rows of D, namely rows 0, 1, and 3,
correspond to interior edges, which is confirmed by Figure 4.3. Linear depen-
dence between rows 2 and 4 indicates that edges 2 and 4 have common coarse
endpoints, with the difference in sign indicating opposite orientations.

21

Figure 4.3: Original mesh with nodal aggregates (left), coarse nodes (center),
and coarse edges (right).

For each non-zero and un-aggregated row of D, dependent rows traverses

G = DT
1 D1 =



1 −1 0 1 0 0 0
−1 1 0 −1 0 0 0

0 0 1 −1 1 0 0
1 −1 −1 2 −1 0 0
0 0 1 −1 2 −1 1
0 0 0 0 −1 1 −1
0 0 0 0 1 −1 1


, (4.8)

to find dependent rows among upper-adjacent edges. In this case, edges 3 and
4 are upper-adjacent to 2, however only row 4 in D is linearly dependent to row
2 in D. Rows 5 and 6 of D are not linearly dependent to any other rows, thus
forming single aggregates for edges 5 and 6. The resulting aggregation operator

P1 =



0 0 0
0 0 0
1 0 0
0 0 0
−1 0 0

0 1 0
0 0 1


, (4.9)

is then used to produce the coarse discrete derivative operator

D̂0 = (PT
1 P1)−1PT

1 D0P0 =

−1 1 0
0 −1 1
−1 0 1

 , (4.10)

for the mesh in Figure 4.3. Subsequent iterations of the algorithm produce

22

operators

P2 =

0
0
1

 , D̂1 = (PT
2 P2)−1PT

2 D1P1 =
[

1 1 −1
]
, D̂2 = D2P2 =

[
0
]
,

(4.11)

which complete the coarse de Rham complex.

4.6 Commutativity

We now prove tentative prolongators P0, P1, . . . , PK and coarse derivative oper-
ators D̂0, D̂1, . . . , D̂K produced by Algorithm 4.1 satisfy commutative diagram
(4.4). The result is summarized by the following theorem.

Theorem 1. Let Pk : Ω̂k
d → Ωk

d denote the discrete k-form prolongation oper-
ators with the following properties

Pk+1 has full column rank (4.12i)

R(DkPk) ⊂ R(Pk+1) (4.12ii)

D̂k ⇐ (PT
k+1Pk+1)−1PT

k+1DkPk (4.12iii)

Then, diagram (4.4) holds. That is,

DkPk = Pk+1D̂k (4.13)

Proof. Since Pk+1 has full column rank, the pseudoinverse is given by

P+
k+1 = (PT

k+1Pk+1)−1PT
k+1. (4.14)

Recall that for an arbitrary matrix A the pseudoinverse satisfies AA+A = A.
Furthermore, R(DkPk) ⊂ R(Pk+1) implies that DkPk = Pk+1X for some matrix
X. Combining these observations,

Pk+1D̂k = Pk+1P
+
k+1DkPk,

= Pk+1P
+
k+1Pk+1X,

= Pk+1X,

= DkPk

Since Algorithm 4.1 meets assumptions (4.12i),(4.12ii), and (4.12iii) it fol-
lows that diagram (4.4) is satisfied. Also, assuming disjoint aggregates, the
matrix (PT

k+1Pk+1) appearing in (4.14) is a diagonal matrix, so its inverse is
easily computed.

23

4.7 Chain Complex

The de Rham complex formed by the fine-level discrete derivative operators,

0
D−1- Ω0

d

D0 - Ω1
d

D1 - . . . ΩN
d

DN - 0 (4.15)

is a chain complex, i.e. img(Dk) ⊂ ker(Dk+1) or equivalently Dk+1Dk = 0. A
natural question to ask is whether the coarse complex retains this property. As
argued in Section 4.6, DkPk = Pk+1X for some matrix X, therefore it follows

D̂k+1D̂k = P+
k+2Dk+1Pk+1P

+
k+1DkPk,

= P+
k+2Dk+1Pk+1P

+
k+1Pk+1X,

= P+
k+2Dk+1Pk+1X,

= P+
k+2Dk+1DkPk,

= 0,

since Dk+1Dk = 0 by assumption. From diagram (3.4) we infer the same result
for the associated finite element spaces.

4.8 Smoothed Prolongators

While the tentative prolongators P0, P1, . . . produced by coarsen complex com-
mute with Dk and give rise to a coarse chain complex, their piecewise-constant
nature leads to suboptimal multigrid scaling [37, 29]. In Smoothed Aggrega-
tion [44], the tentative prolongator P is smoothed to produce another prolonga-
tor P = SP with superior approximation characteristics. We consider prolon-
gation smoothers of the form S = (I − SA). Possible implementations include
Richardson S = ωI, Jacobi S = ω diag(A)−1, and polynomial S = p(A) [3].

Smoothed prolongation operators are desirable, but straightforward appli-
cation of smoothers to each of P0, P1, . . . violates commutativity. The solution
proposed in [29] smooths P0 and P1 with compatible smoothers S0,S1 such
that commutativity of the smoothed prolongators P0,P1 is maintained, i.e.
D0P0 = P1D̂0. In the following theorem we generalize this result to arbitrary k.

Theorem 2. Given discrete k-form prolongation operators Pk satisfying (4.12i),
(4.12ii), and (4.12iii), let Pk : Ω̂k

d → Ωk
d denote the smoothed discrete k-form

prolongation operators with the following properties

Pk = SkPk (4.16i)

S0 = (I − S0DT
0 M1D0) (4.16ii)

Sk = (I − SkDT
k Mk+1Dk − Dk−1Sk−1DT

k−1Mk) for k > 0 (4.16iii)

where Sk defines the type of prolongation smoother. Then, diagram (4.4) holds.

24

That is,
DkPk = Pk+1D̂k (4.17)

Proof. First, if
DkSk = Sk+1Dk (4.18)

then

Pk+1D̂k = Sk+1Pk+1D̂k

= Sk+1Pk+1(PT
k+1Pk+1)−1PT

k+1DkPk

= Sk+1DkPk

= DkSkPk

= DkPk

Therefore, it suffices to show that (4.18) holds for all k. For k = 0 we have

S1D0 = (I − S1DT
1 M2D1 − D0S0DT

0 M1)D0

= (D0 − S1DT
1 M2D1D0 − D0S0DT

0 M1D0)

= (D0 − D0S0DT
0 M1D0)

= D0(I − S0DT
0 M1D0)

= D0S0

and for all k > 1 we have

Sk+1Dk = (I − Sk+1DT
k+1Mk+2Dk+1 − DkSkDT

k Mk+1)Dk

= (Dk − Sk+1DT
k+1Mk+2Dk+1Dk − DkSkDT

k Mk+1Dk)

= (Dk − DkSkDT
k Mk+1Dk)

= (Dk − DkSkDT
k Mk+1Dk − DkDk−1Sk−1DT

k−1Mk)

= Dk(I − SkDT
k Mk+1Dk − Dk−1Sk−1DT

k−1Mk)

= DkSk

which completes the proof of (4.17).

On subsequent levels, the coarse innerproducts M̂k = PT
k MkPk and deriva-

tives D̂k replace Mk and Dk in the definition of Sk. As shown below, the Galerkin
product Âk = PT

k AkPk can also be written in terms of the coarse operators.

Âk = PT
k AkPk

= PT
k DT

k Mk+1DkPk

= D̂T
kPT

k+1Mk+1Pk+1D̂k

= D̂T
k M̂k+1D̂k

25

4.9 Extensions

Note that condition (4.5) permits some freedom in our choice of aggregates. For
instance, in restricting ourselves to contiguous aggregates we have slightly en-
riched the range of Pk+1 beyond what is necessary. Provided that Pk+1 already
satisfies (4.5), additional coarse basis functions can be introduced to better ap-
proximate low-energy modes. As in Smoothed Aggregation, these additional
columns of Pk+1 can be chosen to exactly interpolate given near-nullspace vec-
tors [44].

So far we have only discussed coarsening the cochain complex (4.4). It is
worth noting that coarsen complex works equally well on the chain complex
formed by the mesh boundary operators ∂k = DT

k−1,

0 �
DT
−1 Ω0

d . . . �
DT

N−2 ΩN−1
d

�
DT

N−1 ΩN
d
�DT

N 0, (4.19)

by simply reversing the order of the complex,

D−1,D,0 , . . . ,DN ⇒ DT
N ,DT

N−1, . . . ,D−1. (4.20)

In this case aggregate nodes will aggregate top-level elements, such as the
triangles in Figure 3.1. Intuitively, ∂k acts like a derivative operator that maps
k-cochains to (k+ 1)-cochains, however one typically refers to these as k-chains
rather than cochains [28].

4.10 Numerical Results

We have applied the proposed method to a number of structured and unstruc-
tured problems. In all cases, a multigrid V(1,1)-cycle is used as a preconditioner
to conjugate gradient iteration. Unless stated otherwise, a symmetric Gauss-
Seidel sweep is used during pre- and post-smoothing stages. Iteration on the
positive-semidefinite systems,

DT
k Dk, DkDT

k , DT
k Mk+1Dk, (4.21)

proceeds until the relative residual is reduced by 10−10. The matrix DT
0 M1D0

corresponds to a Poisson problem with pure-Neumann boundary conditions.
Similarly, DT

1 M2D1 is an eddy-current problem (4.2) with σ = 0. As explained
in Chapter 7, matrices (4.21) arise in discrete Hodge decompositions.

The multigrid hierarchy extends until the number of unknowns falls below
500, at which point a pseudoinverse is used to perform the coarse level solve.

26

The tentative prolongators are smoothed twice with a Jacobi smoother

S = I − 4
3λmax

diag(A)−1A (4.22)

P = SSP (4.23)

where λmax is an upper bound on the spectral radius of diag(A)−1A. When
zero or near zero values appear on the diagonal of the Galerkin product PTAP,
the corresponding rows and columns are zeroed and ignored during smoothing.
We discuss this choice of prolongation smoother in Section 4.11.

Tables 4.1 and 4.2 show the result of applying the proposed method to regular
quadrilateral and hexahedral meshes of increasing size. In both cases, the finite
element spaces described in [11] are used to produce the innerproducts Mk.
The systems are solved with a random initial value for x. Since the matrices are
singular, the solution x is an arbitrary null vector. Column labels are explained
as follows:

• ‘Grid’ - dimensions of the quadrilateral/hexahedral grid

• ‘Convergence’- average convergence factor

• ‘WPD’ - work per digit of accuracy 1

• ‘OC’ - operator complexity

• ‘Levels’ - number of levels in the multigrid hierarchy

For each k, the algorithm exhibits competitive convergence factors while main-
taining low operator complexity. Together, the work per digit-of-accuracy re-
mains bounded as the problem size increases.

In Table 4.3, numerical results are presented for the unstructured tetrahe-
dral mesh depicted in Figure 4.4. As with classical algebraic multigrid methods,
performance degrades in moving from a structured to an unstructured tessella-
tion. However the decrease in performance for the scalar problems DT

0 D0 and
DT

0 M1D0 is less significant than that of the other problems.

4.11 Prolongation Smoother Comparison

On the nonscalar problems considered, we found second degree prolongation
smoothers noticeably more efficient than first degree prolongation smoothers.
While additional smoothing operations generally improve the convergence rate
of Smoothed Aggregation methods, this improvement is typically offset by an
increase in operator complexity and therefore the resultant work per digit of
accuracy is not improved. However, there is an important difference between the
tentative prolongators in the scalar and nonscalar problems. In the scalar case,

1Excluding the cost of conjugate gradient iteration.

27

System Grid Unknowns Convergence WPD OC Levels

DT
0 D0

2502 63,001 0.075 5.817 1.636 4
5002 251,001 0.100 6.644 1.661 4

10002 1002,001 0.063 5.617 1.686 5

DT
1 D1

2502 125,500 0.096 5.919 1.506 4
5002 501,000 0.103 6.187 1.527 5

10002 2,002,000 0.085 5.773 1.545 5

D0DT
0

2502 125,500 0.124 6.751 1.530 4
5002 501,000 0.133 7.040 1.542 5

10002 2,002,000 0.094 6.049 1.553 5

D1DT
1

2502 62,500 0.063 5.467 1.641 4
5002 250,000 0.063 5.477 1.664 4

10002 1,000,000 0.063 5.620 1.687 5

DT
0 M1D0

2502 63,001 0.043 4.142 1.415 4
5002 251,001 0.055 4.547 1.432 4

10002 1,002,001 0.041 4.175 1.448 5

DT
1 M2D1

2502 125,500 0.095 5.893 1.506 4
5002 501,000 0.103 6.187 1.527 5

10002 2,002,000 0.085 5.773 1.545 5

Table 4.1: Two-dimensional scaling results.

Figure 4.4: Titan IV rocket mesh.

28

System Grid Unknowns Convergence WPD OC Levels

DT
0 D0

253 17,576 0.120 5.508 1.268 3
503 132,651 0.151 6.333 1.300 3

1003 1,030,301 0.105 5.550 1.358 4

DT
1 D1

253 50,700 0.192 7.233 1.296 3
503 390,150 0.216 8.066 1.342 4

1003 3,060,300 0.208 8.300 1.415 4

DT
2 D2

253 48,750 0.188 6.371 1.156 3
503 382,500 0.218 7.135 1.180 3

1003 3,030,000 0.267 8.488 1.217 4

D0DT
0

253 50,700 0.287 9.194 1.246 3
503 390,150 0.391 12.113 1.235 4

1003 3,060,300 0.323 10.204 1.252 4

D1DT
1

253 48,750 0.187 7.630 1.389 3
503 382,500 0.264 9.703 1.403 4

1003 3,030,000 0.194 8.172 1.455 4

D2DT
2

253 15,625 0.089 4.957 1.302 3
503 125,000 0.102 5.318 1.318 3

1003 1,000,000 0.103 5.543 1.368 4

DT
0 M1D0

253 17,576 0.037 3.291 1.178 3
503 132,651 0.053 3.763 1.200 3

1003 1,030,301 0.038 3.495 1.241 4

DT
1 M2D1

253 50,700 0.097 4.674 1.184 3
503 390,150 0.113 5.128 1.214 4

1003 3,060,300 0.088 4.790 1.264 4

DT
2 M3D2

253 48,750 0.188 6.371 1.156 3
503 382,500 0.223 7.243 1.180 3

1003 3,030,000 0.265 8.440 1.217 4

Table 4.2: Three-dimensional scaling results.

System Unknowns Convergence WPD OC Levels
DT

0 D0 84,280 0.073 4.588 1.304 3
DT

1 D1 554,213 0.378 13.197 1.391 4
DT

2 D2 920,168 0.366 10.868 1.186 4
D0DT

0 554,213 0.236 14.601 2.289 4
D1DT

1 920,168 0.390 11.708 1.197 4
D2DT

2 450,235 0.370 9.662 1.043 3
DT

0 M1D0 84,280 0.144 6.197 1.304 3
DT

1 M2D1 554,213 0.518 20.765 1.483 4
DT

2 M3D2 920,168 0.348 10.357 1.187 4

Table 4.3: Performance of cSA on the tetrahedral rocket mesh.

29

System Grid Degree Percent Zero Convergence WPD OC

DT
1 M2D1 2502

0 66.8 0.697 42.255 1.123
1 66.8 0.357 14.774 1.123
2 22.9 0.096 8.379 1.506
3 0.4 0.063 9.515 2.084
4 0.0 0.063 10.188 2.250

DT
1 M2D1 503

0 67.6 0.567 25.043 1.034
1 66.5 0.290 11.497 1.035
2 8.8 0.096 7.460 1.214
3 0.3 0.063 9.011 1.577
4 0.0 0.063 9.074 1.632

DT
2 M3D2 503

0 89.63 0.549 23.670 1.034
1 89.63 0.382 14.753 1.034
2 63.93 0.214 10.304 1.180
3 23.77 0.122 9.203 1.481
4 6.48 0.098 8.348 1.487
5 2.07 0.089 10.267 1.953

Table 4.4: Comparison of prolongation smoothers.

all degrees of freedom are associated with a coarse aggregate and therefore the
tentative prolongator has no zero rows. As described in Section 4.5, the tentative
prolongator for nonscalar problems has zero rows for elements contained in
the interior of a nodal aggregate. In the nonscalar case, additional smoothing
operations incorporate a greater proportion of these degrees of freedom into the
range of the final prolongator.

The influence of higher degree prolongation smoothers on solver performance
is reported in Table 4.4. Column ‘Degree’ records the degree d of the prolonga-
tion smoother P = SdP while ‘Percent Zero’ reflects the percentage of zero rows
in the first level prolongator. As expected the operator complexity increases with
smoother degree. However, up to a point, this increase is less significant than
the corresponding reduction in solver convergence. Second degree smoothers
exhibit the best efficiency in both instances of the problem DT

1 M2D1 and re-
main competitive with higher degree smoothers in the last test. Since work per
digit figures exclude the cost of constructing multigrid transfer operators, these
higher degree smoothers may be less efficient in practice.

30

Chapter 5

k-Form Basis Method

The chain complex method (cSA) described in Chapter 4 constructs a multi-
grid hierarchy by aggregating nodes of a scalar problem and then computing
the induced higher-dimensional aggregates. Since the cSA coarsening proce-
dure operates directly on discrete derivative operators, problems discretized on
both structured and unstructured meshes, and their dual meshes, are handled
uniformly. Furthermore, coarser levels form chain complexes and, through in-
terpolation, commute with the finer levels.

The results of the numerical study in Section 4.10 indicate that cSA is more
effective for problems discretized on structured meshes than those on unstruc-
tured meshes. In particular, when a non-trivial innerproduct1 is introduced to
an unstructured problem, solver convergence degrades. This example highlights
the primary deficiency of the chain complex approach: the aggregation process
does not consider the spatial embedding of the elements. For instance, in the
1-form problem DT

1 M2D1 any two edge elements that belong to the same face
are considered for membership in the same aggregate. Due to the locality of
aggregates, the members of an aggregate typically represent similar fields. In
the case of discrete 1-forms or edge elements, the constituent edges ought to
“point” in the same direction. The structured mesh depicted in Figure 5.1 illus-
trates an ideal instance for the cSA method. Indeed, with the nodal aggregates
shown, the coarse complex produced by cSA is natural geometric coarsening of
the fine-level mesh.

While the cSA procedure does consider the orientation of faces, it is only in
a topological sense. For example, perpendicular edges are allowed to aggregate
together. On the other hand, when cSA is applied to structured meshes, the
shape of the initial nodal aggregates tends to favor the creation of meaningful
higher-dimensional coarse-level aggregates. Unfortunately, this property of cSA
on structured meshes does not carry over to the unstructured case.

In this Chapter we introduce an algorithm to specifically address the afore-
mentioned limitations of cSA. The proposed method, which we call the k-form
basis Method (kSA), applies the smoothed aggregation methodology to discrete
k-form problems. The primary distinction between the cSA and kSA methods is
that the former maintains the differential structure throughout the multigrid hi-

1e.g. Mk determined by Whitney interpolation

31

Figure 5.1: With appropriate nodal aggregates, such as those at left, cSA coars-
ening produces similarly structured coarse complexes. In this example, three
fine edges with the same orientation extend from each coarse edge (right).

erarchy while the latter ensures that certain k-forms are accurately represented
at all levels.

5.1 Discrete k-Form Bases

Recall that construction of the Smoothed Aggregation (SA) hierarchy (cf. Sec-
tion 2.1) requires a problem-dependent set of near-nullspace candidate vectors.
Given an aggregation of the fine-level degrees of freedom, the candidates are
used to ensure that near-nullspace modes are well-approximated by the range
of the tentative prolongators.

The cSA method deviates from the “standard” smoothed aggregation ap-
proach in that the tentative prolongator is computed directly, effectively com-
bining Aggregate and FitCandidates steps of Algorithm 2.2 into a single pro-
cedure. Subsequents steps of the cSA setup algorithm, namely prolongator
smoothing and formation of the Galerkin operator PTAP , follow the standard
SA methodology. While coarser grids of the cSA hierarchy maintain various
properties, they are not constructed to capture any particular set of low-energy
modes.

As an alternative, we choose a specific set of near nullspace candidates to
be reproduced exactly. Inspired by the work of [8], the kSA method applies
this approach to general k-form problems. By suppling SA with a k-form basis,
we ensure their representation on coarser levels. These basis vectors, like the
rigid-body modes in linearized elasticity, are computed directly from the mesh
representation.

5.1.1 Discrete 0-form Bases

When solving the Poisson problem with smoothed aggregation, the constant
vector b0 = [1, 1, . . . , 1]T suffices to capture the near-kernel. Since the matrix

32

Figure 5.2: Enumeration of vertices (left) and oriented edges (right) for a simple
triangle mesh.

Figure 5.3: Applying the de Rham map R to dx, i.e. integrating the continuous
1-form dx along the edges of the mesh, produces the coefficients in the left figure.
The right figure displays the same procedure applied to dy.

DT
0 M1D0 of the discrete 0-form problem is simply a scalar Laplacian operator,

the constant vector again suffices. In the context of k-form bases, the constant
function 1 is a basis for 0-forms on a manifold: i.e. any 0-form can be described
as the product of a scalar function f(x) and 1.

5.1.2 Discrete 1-form Bases

In two dimensional Euclidean space, a 1-form basis is spanned by dx and dy,
which are identified with vector fields in the directions of the x and y axes respec-
tively. Likewise, dx, dy, and dz constitute a 1-form basis in three dimensional
Euclidean space. In general, a manifold parameterized with D coordinates has
D distinct 1-form basis elements. Recall from Section 3.1 that discrete 1-forms
(1-cochains) are represented by a vector of scalar values, with one value for each
mesh edge. Therefore, a discrete 1-form basis for a manifold with D coordinates
is represented by a matrix B with dimension NE ×D, where NE is the number
of mesh edges.

Consider the problem of computing a 1-form basis for the two-dimensional
mesh shown in Figure 5.2. The discrete 1-form corresponding to the continuous
field dx is obtained by computing the line integral of dx along each edge of
the mesh and storing the results in a column vector. The discrete 1-form for
dy is computed in a similar fashion. In Euclidean space, this is equivalent to
computing the line integral of the corresponding coordinate vector fields along

33

Figure 5.4: Simplicial discretization of the torus.

each mesh edge. Figure 5.3 illustrates the coefficients associated with each of
the mesh. We use the enumeration of edges shown in Figure 5.2 to arrange each
set of coefficients into a column vector. Column vectors are then assembled into
a matrix

B =



1 0
1 1
1 0
0 1
−1 1

0 1
1 0


, (5.1)

which constitutes a complete 1-form basis for this mesh. In kSA, this matrix
provides the near-nullspace candidates for the hierarchy construction process.

The previous process is a specific application of the de Rham map R, in-
troduced in Section 3.1, to discretized continuous 1-forms. In the general case,
we apply the de Rham map R to each of the smooth 1-form basis functions
to obtain a discrete 1-form basis. Although we are primarily concerned with
discrete manifolds embedded in two and three-dimensional Euclidean space, the
method generalizes further. For instance, the surface of a torus is (locally) pa-
rameterized by coordinates u and v. Discretizing du and dv on the torus mesh
(Figure 5.4) provides a valid 1-form basis for the kSA method. Since the torus
mesh is also embedded in three-dimensional Euclidean space, the 1-form ba-
sis consisting of dx, dy, and dz provides another alternative. We explore this
example in Section 5.5.

While one can apply the previously mentioned approach to compute discrete
1-form bases, a computationally simpler method exists for meshes embedded in
Euclidean space. Consider again the mesh in Figure 5.2 whose vertex coordi-

34

nates are specified by the matrix

V =


0 0
1 0
2 0
1 1
2 1

 . (5.2)

Note that the columns of V can also be viewed as discrete versions of the scalar
fields x and y. Specifically, the first and second columns of V are Rx and Ry.
Exploiting the commutative relationship depicted in Diagram 3.7 allows one to
compute Rdx as D0Rx, or the complete 1-form basis B = D0V .

5.1.3 Discrete 2-form Bases

The 2-forms dx ∧ dy, dx ∧ dz, and dy ∧ dz span a basis in three-dimensional
Euclidean space. Here, ∧ denotes the wedge product of exterior calculus [1, 22].
The definition ∧ : Ωk1 × Ωk2 → Ωk1+k2 implies that wedge product is used to
construct higher-dimensional forms from two lower-dimensional forms. Since k-
forms are meant to be integrated over k-dimensional spaces, the wedge product
provides a way to integrate area (2-form) and volume (3-form) beginning with
the notion of length (1-form). For instance, integrating the 2-form dx∧ dy over
a subset of the Euclidean plane yields the region’s area.

In Euclidean 3-space, a 2-form measures flux density. For example, inte-
grating dx ∧ dy over a two-dimensional surface yields the net flux through the
surface of the unit vector field in the z-direction. Similarly, dx∧dz, and dy∧dz
measure flux density in the −y and x directions respectively. Intuitively, dx∧dy
represents an infinitesimal square region swept out by 1-forms dx and dy.

As an alternative to computing the directly 2-form basis directly, one may
apply the approach advocated for 1-forms, i.e. discretizing a lower-dimensional
form whose derivative is the desired result. For example, the discrete 1-form
Rxdy is a potential field for the 2-form Rdx ∧ dy which is computed D1Rxdy.

5.1.4 General k-form Bases

In the general case, a k-form basis on a D-dimensional manifold has
(
D
k

)
ele-

ments. The two methods we have discussed, direct application of the de Rham
map R and use of a discrete potential Dk−1R, also apply to the general case.
Alternatively, if a discrete wedge product [28] is available, a k-form basis can
be constructed recursively from a 1-form basis. Specifically, once the D dis-
tinct discrete 1-form basis elements are computed, each of the

(
D
k

)
k-form basis

elements are computed by wedging the k constituent 1-forms together.

35

5.1.5 Dual Meshes

Sections 5.1.1-5.1.4 outlined the construction of bases for k-form problems of the
form DT

k Dk and DT
k Mk+1Dk. The unknowns of these problems are associated

with the nodes, edges, facets, and volumes of the primal mesh. In contrast,
inputs to operators of the form DkDT

k are identified with elements of the dual
mesh.

We construct k-form bases for dual problems by applying R to the barycen-
tric dual of the mesh. For instance, the barycentric dual of a tetrahedron is
a vertex at the barycenter of the tetrahedron. Likewise, the dual of a trian-
gular face in a tetrahedral mesh is an edge that joins the barycenters of the
tetrahedra on either side of the face. Structured quadrilateral and hexahedral
meshes admit a similar geometric dual mesh. Boundary elements, such as the
surface facets of a 3D mesh, do not have proper dual mesh counterparts and are
assigned the value 0 in the discrete basis.

Our use of the dual mesh is motivated by the geometric duals that appear
in the development of covolume methods [28, 34]. Covolume methods use the
elements in the primal and circumcentric dual meshes to construct a discrete
Hodge star operator which is then used to transfer quantities between the primal
and dual meshes and to define the innerproduct Mk. For our domain of interest,
the barycentric dual is more appropriate than the circumcentric dual since the
latter is applicable only to well-centered meshes, which are uncommon, while
the former exists for all meshes. Indeed, the creation of well-centered meshes
remains an open problem [43].

5.2 Coarse Basis Functions

In this section we compare and contrast the coarse basis functions produced by
the cSA and kSA methods. In cSA, the aggregation of higher-dimensional k-
forms is induced by nodal aggregates on the 0-form problem. Nodal aggregates
are computed with the standard aggregation algorithm [44] using the scalar
Laplacian matrix DT

0 D. Figure 5.5 illustrates example nodal aggregates and
induced coarse edges produced by cSA coarsening in the context of a 1-form
problem. For this example, the coarse-level problem has three degrees of freedom
(DoFs), one for each coarse edge. As described in Section 4.3, the relative
orientation between coarse and fine-level edges determines the coefficients of
each coarse basis function, which form the columns of the tentative interpolation
operator. Figure 5.6 depicts these tentative coarse basis functions.

Since the cSA hierarchy has a one-to-one relationship between coarse ag-
gregates and coarse-level degrees of freedom, the coarser grids resemble coarser
discretizations of the same domain. While intuitive, this property needlessly re-
stricts the choice of coarse basis functions. Specifically, cSA does not utilize the
support for multiple DoFs per aggregate in smoothed aggregation. As discussed

36

Figure 5.5: Examples of node and edge aggregates produced by the cSA method.
In this case, three coarse edges are induced by the nodal aggregation.

Figure 5.6: The tentative prolongator of the cSA method has three basis func-
tions, corresponding to each of the coarse edges. Fine-level edges that cross
between nodal aggregates interpolate from a coarse edge with a value deter-
mined by their relative orientations.

in Section 2.1, the use of several near-nullspace candidates is instrumental in
solving vector-valued problems such as linearized elasticity with smoothed ag-
gregation. In such applications, the relationship between coarse and fine-level
unknowns is less direct than that of cSA.

A potential improvement to cSA is to by develop more than one coarse hier-
archy. Since different nodal aggregations give rise to different higher-dimensional
aggregates, using several cSA coarsenings at each level of the hierarchy tends to
improve interpolation. Unfortunately this approach greatly increase the cost of
the cSA method without ensuring that smooth modes are well-approximated.

In contrast to cSA, the kSA method aggregates the degrees of freedom of
k-form problems directly and does not maintain the chain complex property
on coarser levels. Although we postpone a full discussion of the aggregation
algorithm itself until Chapter 6, we remark here that the sparsity structure of
k-form problems is poorly suited to the standard SA coarsening. For now we
presume that the unknowns are partitioned into disjoint aggregates similar to
the partition of edge elements in Figure 5.8.

Despite having similar spatial partitions, the kSA basis functions shown in
Figure 5.9 are qualitatively different from the cSA basis functions illustrated
in Figure 5.6. Indeed, the cSA basis functions have limited support which
leaves many fine-level edges outside the range of the tentative prolongators. In

37

contrast, the kSA tentative prolongator extends to all fine edges. While prolon-
gator smoothing has the effect of broadening the support region of coarse basis
functions, it is an imprecise and potentially expensive means of extending in-
terpolation to all fine-level degrees of freedom. As demonstated in Section 4.11,
many fine degrees of freedom only appears in the tentative prolongator after
several prolongation smoothing steps. However, since prolongation smoothing
is a global process, the resulting multigrid hierarchy has considerably higher
complexity.

Another qualitative difference between the cSA and kSA methods is that
the former retains a similar structure on coarser levels while the latter does not.
Specifically, the second level of a cSA hierarchy resembles a coarser mimetic
discretization of the same domain while the second level of a kSA hierarchy
resembles a coarser discretization using nodal finite elements. As illustrated
by Figure 5.7, subsequent levels of the kSA hierarchy have the same structure
as other vector-valued problems (e.g. linearized elasticity). In light of this
quality, the kSA hierarchy can be viewed as a one-level transformation to a
nodal problem followed by a traditional smoothed aggregation hierarchy.

In this regard, the kSA method is similar to the work of Bochev et al. [9]. Like
the cSA method, their approach uses nodal aggregation to determine coarse-level
basis functions. However, unlike cSA the coarse basis functions are chosen to
fit a set of candidate vectors. Rather than forming disjoint edge aggregates, the
support of the basis functions extends to all edges with at least one endpoint in
each nodal aggregate. Representative aggregates and coarse basis functions are
shown in Figures 5.10 and 5.11 respectively. Here, the weighting of edges that
join separate nodal aggregates can be viewed as a simplified form of prolongator
smoothing which ensures that the 1-form basis still lies within the range of
interpolation.

5.3 Proposed Method

Recall the SA hierarchy construction procedure detailed in Algorithm 2.2. With
the k-form operator A and the discrete k-form basis discussed in Section 5.1
providing B, the matrix of near-nullspace candidates, the requirements of the
construction algorithm are satisfied. However, for reasons explained in Chap-
ter 6, we replace the standard aggregation algorithm, denoted Aggregate in
Algorithm 2.2, with Lloyd aggregation on the first level of coarsening.

Other approaches, such as cSA and the method of Bochev et al. [9], use nodal
aggregation methods to aggregate higher-dimensional discrete forms. In con-
trast, kSA aggregates discrete k-forms directly with Lloyd aggregation. Com-
pared to cSA, which must also coarsen all discrete operators of dimension less
than k, this approach avoids a considerable amount of work.

38

Figure 5.7: Tentative coarse basis functions produced by the kSA method.

39

Figure 5.8: Example edge aggregates (left) used by the kSA method. Each
aggregate supports two basis functions corresponding to the 1-forms dx and dy
for a total of six coarse-level degrees of freedom.

Figure 5.9: Discrete 1-form basis functions dx and dy are restricted to each
edge aggregate to determine the coarse basis functions. The value of dx or dy
on an edge may be found by applying the de Rham map to the corresponding
continuous 1-form. Differencing the x and y coordinates at the endpoints of
each edge yields an equivalent result.

40

Figure 5.10: The method of Bochev et al. uses nodal aggregates (left) to deter-
mine the support of coarse edge-element basis functions. In this two-dimensional
example, each nodal aggregate gives rise to two coarse-level degrees of freedom
(right).

Figure 5.11: The method of Bochev et al. restricts discrete 1-form basis func-
tions dx and dy over each nodal aggregate. Edges that straddle two nodal
aggregates interpolate from both coarse DoFs with weight 1/2.

41

System Grid Unknowns Convergence WPD OC Levels

DT
0 D0

2502 63,001 0.405 11.027 1.081 3
5002 251,001 0.397 10.770 1.082 3

10002 1002,001 0.416 11.362 1.083 4

DT
1 D1

2502 125,500 0.192 7.281 1.304 3
5002 501,000 0.180 7.030 1.307 4

10002 2,002,000 0.193 7.325 1.310 4

D0DT
0

2502 125,500 0.241 8.437 1.305 3
5002 501,000 0.331 10.901 1.308 4

10002 2,002,000 0.329 10.867 1.310 4

D1DT
1

2502 62,500 0.387 10.487 1.080 3
5002 250,000 0.399 10.858 1.082 3

10002 1,000,000 0.446 12.361 1.082 4

DT
0 M1D0

2502 63,001 0.319 8.552 1.060 3
5002 251,001 0.339 9.028 1.060 3

10002 1,002,001 0.331 8.827 1.061 4

DT
1 M2D1

2502 125,500 0.178 6.951 1.304 3
5002 501,000 0.180 7.026 1.309 4

10002 2,002,000 0.183 7.103 1.311 4

Table 5.1: Scaling results of the kSA method on regular quadrilateral meshes
using 30 nodes per aggregate.

5.4 Numerical Results

We have applied the proposed method to the structured and unstructured
meshes first examined in the context of the cSA method. The following nu-
merical results use the testing methodology introduced in Section 4.10 with two
minor changes. First, in place of preconditioned conjugate gradient iteration, we
use the MINRES algorithm [35] with preconditioning. Second, an energy min-
imization prolongation smoother [32] is applied to the tentative prolongator.
A second degree smoother is used on the first level of the multigrid hierarchy,
while a standard first degree smoother is used on subsequent levels. The cost of
MINRES is comparable to that of the conjugate gradient method and, in our
experience, more numerically stable on the semidefinite problems considered.
The energy minimization approach smooths the tentative coarse basis functions
while ensuring that the near-nullspace candidates lie within the range of inter-
polation. Since cSA does not employ a set of candidate vectors, it is not possible
to apply the energy minimization in that case. As before, a dense pseudoinverse
is used to compute the coarse-level solution.

Table 5.1 reports performance figures for a series of regular quadrilateral
meshes. Although inferior to cSA on a basis of work per digit of accuracy (cf.
Table 4.1), kSA exhibits scalability with low operator complexity. In all cases,
Lloyd aggregation with an average of 30 nodes per aggregate has been used on
the first level of aggregation.

Table 5.2 reports kSA performance figures for a series of regular hexahe-

42

System Grid Unknowns Convergence WPD OC Levels

DT
0 D0

253 17,576 0.357 9.310 1.040 2
503 132,651 0.342 8.998 1.049 3

1003 1,030,301 0.344 9.098 1.054 4

DT
1 D1

253 50,700 0.129 5.906 1.312 3
503 390,150 0.146 6.583 1.374 3

1003 3,060,300 0.151 6.861 1.406 4

DT
2 D2

253 48,750 0.085 5.107 1.364 3
503 382,500 0.089 5.476 1.438 3

1003 3,030,000 0.091 5.707 1.478 4

D0DT
0

253 50,700 0.173 7.209 1.373 3
503 390,150 0.184 7.682 1.445 3

1003 3,060,300 0.188 8.168 1.480 4

D1DT
1

253 48,750 0.172 6.895 1.317 3
503 382,500 0.201 7.890 1.374 3

1003 3,030,000 0.215 8.419 1.407 4

D2DT
2

253 15,625 0.269 7.289 1.040 2
503 125,000 0.315 8.368 1.049 3

1003 1,000,000 0.322 8.577 1.054 4

DT
0 M1D0

253 17,576 0.165 5.243 1.023 2
503 132,651 0.193 5.777 1.033 3

1003 1,030,301 0.176 5.528 1.038 3

DT
1 M2D1

253 50,700 0.108 5.150 1.246 3
503 390,150 0.112 5.553 1.320 3

1003 3,060,300 0.113 5.727 1.357 3

DT
2 M3D2

253 48,750 0.087 5.146 1.364 3
503 382,500 0.092 5.581 1.442 3

1003 3,030,000 0.099 5.900 1.481 4

Table 5.2: Scaling results of the kSA method on regular hexahedral meshes
using 100 nodes per aggregate on the finest level.

43

System Unknowns Convergence WPD OC Levels
DT

0 D0 84,280 0.361 9.187 1.016 3
DT

1 D1 554,213 0.293 9.015 1.200 3
DT

2 D2 920,168 0.194 6.909 1.231 3
D0DT

0 554,213 0.292 11.257 1.504 3
D1DT

1 920,168 0.497 18.492 1.403 3
D2DT

2 450,235 0.426 11.313 1.048 3
DT

0 M1D0 84,280 0.411 10.530 1.016 3
DT

1 M2D1 554,213 0.337 10.313 1.219 3
DT

2 M3D2 920,168 0.190 6.840 1.233 3

Table 5.3: Performance of kSA on the tetrahedral rocket mesh using 100 nodes
per aggregate.

System Unknowns Convergence WPD OC Levels
DT

0 D0 91,578 0.322 8.374 1.029 3
DT

1 D1 585,543 0.253 8.894 1.327 3
DT

2 D2 949,646 0.163 6.887 1.354 4
D0DT

0 585,543 0.281 11.101 1.528 3
D1DT

1 949,646 0.258 9.270 1.363 3
D2DT

2 455,683 0.424 11.202 1.042 3
DT

0 M1D0 91,578 0.445 11.733 1.029 3
DT

1 M2D1 585,543 0.348 12.098 1.383 3
DT

2 M3D2 949,646 0.171 7.054 1.351 4

Table 5.4: Performance of kSA on a three-holed mesh using 100 nodes per
aggregate.

dral meshes using an average of 100 nodes per aggregate on the first level of
aggregation. Like the two-dimensional case, kSA scales well while maintaining
low operator complexity. In several cases, such as the 1-form problem DT

1 D1

and 2-form problem DT
2 M3D2, kSA requires considerably less work per digit of

accuracy.
Recall the unstructured tetrahedral mesh illustrated in Figure 4.4. Perfor-

mance of the cSA method on this example (cf. Table 4.3) is noticeably worse
than the corresponding problems on structured meshes. Furthermore, when
an innerproduct is introduced to the 1-form problem (i.e. DT

1 M2D1) cSA per-
formance substantially degrades. In contrast, kSA performance, reported in
Table 5.3, is insensitive to the existence of an innerproduct. Ignoring the scalar
problems, which are better handled by standard smoothed aggregation, kSA
performance is generally better than that of cSA.

Another unstructured tetrahedral mesh with three holes is illustrated in
Figure 5.12. As shown by the performance figures in Table 5.4, solver perfor-
mance does not substaintally degrade when an innerproduct is introduced on
this problem.

44

Figure 5.12: Tetrahedral mesh with three holes.

5.5 Coordinate Systems

As mentioned in Section 5.1.2, some manifolds are representable with multiple
coordinate systems. The torus, for instance, is naturally embedded in three-
dimensional Euclidean space with coordinates (x, y, z). This choice of coor-
dinates gives rise to the 1-form basis {dx, dy, dz}, which we refer to as the
embedded basis, is illustrated in Figure 5.13. An alternative set of coordinates
(u, v), where u, v ∈ [0, 2π) also parameterizes the surface2. Figure 5.14 depicts
the associated 1-form basis {du, dv}, which we refer to as the intrinsic basis.

Given that both bases satisfy the expectations of the proposed method, a
natural question arises: which basis is preferable? As Table 5.5 reveals, the
choice of basis does not significantly change the solver’s rate of convergence.
Since the (u, v) 1-form basis consists of only two vectors while the (x, y, z) basis
contains three, the operator complexity of the latter basis is higher. Since the
methods’ convergence is comparable, the (u, v) basis, with its lower complexity,
requires less work per digit of accuracy.

The similarity between convergence rates is attributable to the fact that,
over each aggregate, the embedding basis closely approximates the intrinsic ba-
sis. Indeed, by analogy to the inverse function theorem of smooth manifolds,
the tangent plane at that point on the torus is, locally, a suitable coordinate
system for the surface. As a result, over each aggregate, the subspace of the em-

2We ignore the fact that the (u, v) coordinates are only local coordinates. In reality, an
atlas of four charts, or mappings from a two-dimensional disc to the surface of the torus, is
needed to smoothly parameterize the surface.

45

Figure 5.13: The 1-form basis elements dx, dy, and dz, corresponding to the
Euclidean coordinates (x, y, z).

System Basis Unknowns Convergence WPD OC Levels
D1DT

1 dx, dy, dz 36,864 0.220 8.060 1.324 3
D1DT

1 du, dv 36,864 0.214 10.351 1.732 3
D1M2DT

1 dx, dy, dz 36,864 0.227 8.250 1.652 3
D1M2DT

1 du, dv 36,864 0.209 10.204 1.733 3

Table 5.5: Comparison of kSA performance using different 1-form bases for the
torus mesh.

46

Figure 5.14: The 1-form basis elements du and dv, corresponding to the intrinsic
coordinates (u, v).

47

bedded basis that coincides with the direction of the aggregate’s surface normal
is unnecessary.

We verify the previous claims with the following numerical experiment: the
candidate matrices Buv and Bxyz are used to construct tentative prolongators
Tuv and Txyz using the same aggregation of nodes in both cases. The error of
the best 2-norm approximation of the columns of Tuv by R(Txyz) is given by
the expression

Euv = (I − Txyz(TT
xyzTxyz)−1TT

xyz)Tuv. (5.3)

Relative errors are determined by computing the 2-norm of each column of Euv

and dividing by the norm of the corresponding column of Tuv. Figure 5.15 illus-
trates the distribution of relative approximation errors across two discretizations
of the torus. In both cases the average approximation error is small, only 0.51%
in the coarser discretization and 0.13% in the finer mesh.

Although solver performance using the intrinsic basis is superior to that of
the embedded basis, the embedded basis has several advantages. While the in-
trinsic coordinates of a torus are evident, complex meshes do not admit such
simple mappings. In contrast, a mesh embedding is often available. Further-
more, in most cases of interest, the dimension of the mesh embedding is not
significantly larger than the dimension of the manifold itself, and therefore the
redundancy of the embedded basis is limited.

5.6 Combinatorial Laplacians

Given a set of boundary operators ∂0, ∂1, . . . , ∂N , the k-th combinatorial Lapla-
cian [23, 33] is defined as

∆k = ∂T
k ∂k + ∂k+1∂

T
k+1. (5.4)

Since the discrete derivative is defined to be the adjoint of the boundary operator
(Section 3.1),

∆k = Dk−1DT
k−1 + DT

k Dk (5.5)

is an equivalent definition. Chapter 8 discusses how the topological information
exposed by combinatorial Laplacians is used to determine the coverage of sensor
networks. So far, we have considered the systems DT

k Dk and DkDT
k which are

related to the continuous operators δd and dδ respectively. The combinatorial
Laplacian is related to the Laplace-de Rham, or Hodge Laplacian δd+ dδ.

When solving problems involving combinatorial Laplacians, we apply an
adaptive version of the kSA method. This choice is due, in part, to the fact
that the approach to the sensor network coverage problem discussed in Chapter
8 is coordinate-free. Furthermore, even when coordinates are available and the
kSA method is applied, we observe problem size-dependent convergence rates,
indicating that the k-form basis does not fully capture slow-to-converge modes.

48

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045
Error

0

10

20

30

40

50

60

70

A
g
g
re
g
a
te
s

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Error

0

100

200

300

400

500

600

700

800

A
g
g
re
g
a
te
s

Figure 5.15: Distribution of per-aggregate approximation errors. For each ag-
gregate, a localized basis with elements {dx, dy, dz} is used to approximate the
basis {du, dv}. The reported error is a measure of the difference between the
vectors du and dv and the best approximation to du and dv using the three-
element basis. The top figure reflects the distribution of errors for a torus mesh
with 6,144 triangles while the mesh for the bottom figure has 24,576. As the
mesh is refined, the approximation errors are reduced.

49

System Unknowns Convergence WPD OC Candidates Levels
∆1 554,213 0.505 22.293 1.652 6 3
∆2 920,168 0.491 22.796 1.762 6 3

Table 5.6: Adaptive kSA performance on the combinatorial Laplacians of the
unstructured tetrahedral rocket mesh.

This observation is supported by the results of [8].
Coarsening in adaptive kSA consists of one level of Lloyd aggregation fol-

lowed by standard SA aggregation [44] on subsequent levels. Using this aggre-
gation of variables, the adaptive SA algorithm computes a set of near-nullspace
candidates as explained in Section 2.1.1. Although our primary interest is in the
combinatorial Laplacians that arise in sensor network problems, we report per-
formance figures for the operators ∆1 and ∆2 of the unstructured rocket mesh
in Table 5.6. Here, six near-nullspace candidates have been generated by the
adaptive setup algorithm. First level aggregates, computed with Lloyd aggre-
gation, consist of an average of 200 nodes each. A second degree prolongation
smoother has been used on the first level.

50

Chapter 6

Lloyd Aggregation

Recall the hierarchy construction algorithm of algebraic multigrid based on
smoothed aggregation (SA) discussed in Section 2.1. Aggregates computed dur-
ing the aggregation phase of SA determine the support region of coarse basis
functions in the tentative prolongator. Since the tentative prolongator in turn
determines the smoothed prolongator and Galerkin product PTAP , the selec-
tion of aggregates strongly influences the efficiency and cost of the resultant
multigrid cycle.

In this Chapter we describe an aggregation method based on Lloyd’s method
[30]. We show that the proposed method, which we call Lloyd Aggregation, is an
appropriate and effective method for discrete k-form problems. Furthermore,
the additional flexibility offered by Lloyd aggregation supports a time-memory
tradeoff between work per digit of accuracy (WPD) and operator complexity.

6.1 Standard Aggregation

As a basis for comparison, we consider the aggregation algorithm introduced by
Vanĕk et al. [44], which we refer to as standard aggregation. Standard aggrega-
tion favors small 1-ring neighborhoods, such as those illustrated by Figure 6.1,
when constructing aggregates. Aggregates of this form are well-suited to prob-
lems discretized with nodal finite elements.

Algorithm 6.1 details the steps of the standard aggregation algorithm. The
method takes a strength of connection matrix S as input and produces a number
of aggregate sets Ci. The strength of connection matrix is typically obtained
by dropping weak connections from A, and therefore consists of a subset of its
nonzero entries.

The algorithm proceeds in three serial passes, the first of which identifies
nodes whose entire 1-ring neighborhood is available for aggregation, i.e. a subset
of U . A second pass attempts to place unaggregated nodes into any neighboring
aggregate created in the first pass, while the final pass creates aggregates from
the few remaining nodes without concern for their structure.

Since Algorithm 6.1 is a greedy serial algorithm, it is sensitive to the or-
dering of nodes. As Figure 6.2 demonstrates, a lexicographical ordering of the
nodes of a regular quadrilateral mesh produces square aggregates while a ran-

51

Figure 6.1: The standard aggregation algorithm typically aggregates nodes and
their 1-ring neighbors.

Algorithm 6.1: standard aggregation(S)

1 N ⇐ #rows(S)
2 U ⇐ {0, 1, . . . N − 1}
3 P ⇐ ∅
4 for i = 0, 1, . . . , N − 1
5 i f i ∈ U and Neighbors(S, i) ⊂ U
6 Ci ⇐ Neighbors(S, i) ∪ {i}
7 U ⇐ U \ Ci

8 P ⇐ P ∪ Ci

9 end
10 end
11 for i = 0, 1, . . . , N − 1
12 i f i ∈ U and Neighbors(S, i) ∩ P 6= ∅
13 k ⇐ min{k : j ∈ Ck}
14 Ck ⇐ Ck ∪ {i}
15 U ⇐ U \ {i}
16 end
17 end
18 for i = 0, 1, . . . , N − 1
19 i f i ∈ U
20 Ci ⇐ (Neighbors(S, i) ∪ {i}) ∩ U
21 U ⇐ U \ Ci

22 end
23 end

52

Figure 6.2: The standard aggregation method is sensitive to the ordering of
unknowns. Lexicographical ordering (left) results in square aggregates while
a random ordering (right) yields irregular aggregates on the two-dimensional
Poisson problem discretized with Q1 finite elements.

dom ordering does not. This difference is not merely aesthetic, since the cost
and efficiency of the resulting multigrid cycle depends on the structure of the
aggregates. In this particular comparison, the two orderings give rise to hi-
erarchies with comparable operator complexities (memory cost). However the
WPD of the multigrid cycle in the randomized case is 49.6% greater than that of
the lexicographical ordering, indicating inferior interpolation accuracy. Given
the standard method’s sensitivity to node ordering, a quality that cannot be
assumed in a general setting, the numerical results reported in this chapter are
for randomized orderings of the degrees of freedom.

Remark 1. There are numerous possible variants of Algorithm 6.1. For in-
stance, during the second pass of Algorithm 6.1 the unaggregated node is placed
in the neighboring aggregate with the fewest members, in an attempt to moderate
aggregate size. Alternatively, a parallel analog of Algorithm 6.1 is realized by
computing a distance-2 maximal independent set of S in parallel [31, 2], and
then aggregating nodes with their nearest set member.

6.2 Lloyd’s Method

The proposed method, Lloyd aggregation, is a natural extension of Lloyd’s algo-
rithm [30] to graphs. Therefore, it is instructive to first present Lloyd’s method
in a more conventional setting. Consider the problem of distributing N points,
or centers, in a manner that minimizes the average distance of an arbitrary
point from a given domain to the nearest center. Practical examples of this
problem include quantization of image data, the placement of resources such
as hospitals, and the selection of quadrature nodes [19]. Lloyd’s method is an
iterative algorithm for (approximately) solving such problems.

53

Figure 6.3: Lloyd’s algorithm applied to 25 points in the plane. Shown are the
centers after 1 iteration (upper left), 5 iterations (upper right), 10 iterations
(lower left), and 15 iterations (lower right). At each iteration, each center is
moved to the centroid of its Voronoi region.

Beginning with a given set of centers — e.g. randomly chosen or uniformly
spaced — each iteration of the algorithm consists of two steps. In the first
step, the Voronoi region of each center, i.e. the set of points that are closer
to a given center than any other center, is computed. In the second step, the
centers are moved to the centroid of their Voronoi regions. While the notions of
domain, points, and centroid are problem (and metric) dependent, the procedure
is widely applicable. Figure 6.3 illustrates the problem of selecting 25 centers
from the unit square such that the average Euclidean distance from a point
within the square to its nearest center is minimized. In this case, the centroid
corresponds to the center of mass of each Voronoi region. Despite starting with
a random set of centers, the algorithm generally converges to a reasonable, but
not necessarily optimal, set of centers. For further detail, we refer the interested
reader to the work of Du et al. [19].

54

Figure 6.4: Sequence of four iterations of Lloyd aggregation on a regular quadri-
lateral mesh.

6.3 Proposed Method

Lloyd aggregation is a direct application of Lloyd’s algorithm to the matrix
graph of S, the same strength of connection matrix used in standard aggregation.
In this case, the domain consists of the graph nodes of S, and a random subset
of N nodes serve as the initial centers. The Voronoi regions are determined by
computing the nearest center to each graph node. The distance between two
nodes is simply the length of the shortest path through the graph which joins
them. For now, we assume that each graph edge has unit distance. A centroid
of a region is any node that is farthest from the boundary of that region. When
a region has multiple centroids, the new center is chosen arbitrarily among
them. Figure 6.4 demonstrates this procedure with 25 centers on a regular
discretization of the unit square.

6.3.1 Implementation

There are multiple ways to implement the aforementioned steps of Lloyd ag-
gregation. One approach is to use an efficient multi-source version of Dijkstra’s

55

Algorithm 6.2: modified bellman ford(S,Centers)

1 Distance ⇐ [∞,∞, . . . ,∞]
2 NearestCenter ⇐ [−1,−1, . . . ,−1]
3 for c ∈ Centers
4 Distance [c] ⇐ 0
5 NearestCenter [c] ⇐ c
6 end
7 while True
8 Fin i shed ⇐ True
9 for (i, j) ∈ Nonzeros (S)

10 dij ⇐ S[i, j]
11 i f Distance [i] + dij < Distance [j]
12 Distance [j] ⇐ Distance [i] + dij

13 NearestCenter [j] ⇐ NearestCenter [i]
14 Fin i shed ⇐ False
15 end
16 end
17 i f Fin i shed
18 return Distance , NearestCenter
19 end
20 end

shortest path algorithm to compute the nearest center to each node in the
graph. However, for our domain of interest, a modified form of the Bellman-
Ford algorithm[15] is a more appropriate choice. The modified Bellman-Ford
procedure, detailed in Algorithm 6.2, takes as input the strength of connection
matrix S and a set of centers. For now, we assume that all nonzeros of S have
the value 1, corresponding to unit distances on all graph edges. The modified
Bellman-Ford algorithm propagates not only the distance to the nearest center,
but also the index of that center. Upon completion, the vector NearestCenter
encodes the Voronoi regions surrounding each center and Distance the distance
to the nearest center.

Algorithm 6.2 terminates as soon as the distance vector is correct. Specif-
ically, when the distance vector remains unchanged during an iteration — i.e.
a fixed-point has been reached — then the distances, and Voronoi regions, are
correct. In the context of Lloyd aggregation, where the number of centers is a
fixed ratio of the total number of nodes, the distance to the nearest center is
small. Furthermore, the k-th iteration of Bellman-Form ensures that all nodes
within a path of length k from a center are correctly determined. Therefore, only
a small number of iterations are needed to compute the nearest center to each
node. Furthermore, Algorithm 6.2 is inherently parallel. Indeed, each iteration
of the method resembles a sparse matrix-vector product, with the expression
y(i) = min(y(i), A(i, j) + x(i)) taking the place of y(i) = y(i) + A(i, j) ∗ x(i).
Given the small number of required iterations and the amenability of the algo-
rithm to parallel implementation, Algorithm 6.2 is well-suited to Lloyd aggre-

56

Algorithm 6.3: lloyd aggregation(S,Centers)

1 for i t e r = 1 , . . . , I t e r a t i o n s
2 Distance , NearestCenter ⇐ modi f i ed be l lman fo rd (S ,

Centers)
3 Border ⇐ ∅
4 for (i, j) ∈ Nonzeros (S)
5 i f NearestCenter [i] 6= NearestCenter [j]
6 Border ⇐ Border ∪ {i, j}
7 end
8 end
9 Distance , x ⇐ modi f i ed be l lman fo rd (S , Border)

10 Centers ⇐ { i : Distance [i] > Distance [j] ∀
NearestCenter [i] == NearestCenter [j] }

11 end
12 return e x t r a c t a g g r e g a t e s (NearestCenter)

gation.
When computing the Voronoi regions with modified Bellman-Ford, the dis-

tance of the centers are initialized to 0 and the other nodes with the value ∞.
Upon completion, each node has determined the index of the nearest center and
its distance from that center. As shown in Algorithm 6.3, this process is also
used to compute a centroid of each aggregate by initializing all boundary nodes,
i.e. those nodes that have a neighbor in a different aggregate, with the value 0
and all remaining nodes with∞. Once distances from the boundary nodes have
been computed, any node with maximum distance is selected as the aggregate
centroid. In a parallel setting, this information is propagated across an aggre-
gate in an iterative fashion, thus making all aspects of Lloyd aggregation highly
parallel.

6.4 Results

In this section we compare the proposed method to the standard aggregation of
Vanĕk et al. [44]. Of principle interest is the operator complexity of the multi-
grid hierarchy and the work per digit of accuracy (WPD) of the multigrid cycle.
Operator complexity is a rough metric for the cost of constructing and storing
the multigrid hierarchy, while WPD measures the computational efficiency of
the solver. Although the effect of operator complexity is implicit in WPD, it
is important to consider both measures together. Among methods with simi-
lar cycle efficiencies, the method with the smallest memory and setup cost is
generally preferred. Furthermore, methods that exceed the memory capacity of
a given platform are impractical, independent of their WPD. As a result, it is
worthwhile to consider not only methods with optimal WPD, but also Pareto
optimal methods, i.e. methods with the best WPD for a given operator com-
plexity limit. By varying the number of centers used in the aggregation phase,

57

10
0

10
1

10
2

Nodes per Aggregate

1.0

1.5

2.0

2.5

O
p

e
ra

to
r

C
o
m

p
le

xi
ty

Lloyd
Standard

10
0

10
1

10
2

Nodes per Aggregate

0

2

4

6

8

10

12

14

16

18

W
o
rk

 p
e
r

D
ig

it

Lloyd
Standard

Figure 6.5: Comparison of aggregation methods on a regular quadrilateral mesh
with isotropic diffusion.

we explore the time-memory tradeoff facilitated by Lloyd aggregation.

6.4.1 Methodology

The following results compare Lloyd aggregation to standard aggregation in the
context of algebraic multigrid based on smoothed aggregation. In every test,
a multigrid hierarchy is constructed with one of the two aggregation methods
and is used to precondition conjugate gradient iteration with a V(1,1) cycle
using a symmetric Gauss-Seidel sweep during pre- and post-smoothing. We use
an energy minimization approach [32] for prolongator smoothing. Coarsening
proceeds until the number of unknowns on the coarsest grid falls below 100.
Beginning with a random right hand side, the system Ax = b is iterated upon
until the norm of the residual ||b − Ax|| is reduced by 10 orders of magnitude.
Unless stated otherwise, we apply the same aggregation method, and coarsening
ratio in the case of Lloyd aggregation, on all levels of the multigrid hierarchy.
The ‘Nodes per Aggregate’ figures represent the average number of degrees of
freedom per aggregate in the first level of aggregation only.

6.4.2 Isotropic Diffusion

As our first example, we consider isotropic diffusion on a regular quadrilateral
mesh with 1282 elements. Standard Q1 finite elements are used to discretize
−∆u = f in weak form. Dirichlet boundary conditions are imposed at all
boundary nodes.

The numerical results reported in Figure 6.5 indicate that this model prob-
lem is readily solved by both methods. Here, the standard method achieves
a WPD of 7.39 while maintaining low operator complexity. The best Lloyd
aggregation results have comparable operator complexity, but exhibit inferior
WPD figures. Given the modest cost of the standard approach in this par-
ticular example, the ability of Lloyd aggregation to produce more economical
hierarchies is of marginal benefit. Considering that this is an ideal problem for

58

Figure 6.6: Lloyd aggregates with approximately 40 (left) and 100 (right) nodes
per aggregate.

10
1

10
2

10
3

Nodes per Aggregate

1.00

1.05

1.10

1.15

1.20

1.25

1.30

O
p

e
ra

to
r

C
o
m

p
le

xi
ty

Lloyd
Standard

10
1

10
2

10
3

Nodes per Aggregate

0

5

10

15

20

W
o
rk

 p
e
r

D
ig

it

Lloyd
Standard

Figure 6.7: Comparison of aggregation methods on an unstructured tetrahedral
rocket mesh with isotropic diffusion.

the standard algorithm, the performance of the Lloyd approach is acceptable.
Figure 6.6 illustrates sample Lloyd aggregates with 40 and 100 nodes per ag-
gregate. Despite the increase in nodes per aggregate, the cycle efficiency of the
Lloyd-based method does not substantially degrade.

As shown in Figure 6.7, the performance characteristics of the previous struc-
tured example carry over to the unstructured tetrahedral rocket mesh (cf. Fig-
ure 4.4) discretized with P1 finite elements. Using an average of 30 nodes per
aggregate, the Lloyd-based solver has nearly the same operator complexity as
the standard method, but requires 16% more work per digit of accuracy. While
Lloyd aggregation is able to coarsen more quickly than the standard method,
the low cost of the standard hierarchy implies that aggressive coarsening is un-
necessary within this class of problems.

6.4.3 Anisotropic Diffusion

Anisotropic diffusion is the subject of our second example, which uses the same
discretization as the isotropic case in Section 6.4.2. Before the aggregation

59

10
0

10
1

10
2

Nodes per Aggregate

1.0

1.5

2.0

2.5

O
p

e
ra

to
r

C
o
m

p
le

xi
ty

Lloyd
Standard

10
0

10
1

10
2

Nodes per Aggregate

0

2

4

6

8

10

12

14

16

18

W
o
rk

 p
e
r

D
ig

it

Lloyd
Standard

Figure 6.8: Comparison of aggregation methods on a regular quadrilateral mesh
with anisotropic diffusion.

Figure 6.9: Anisotropic aggregates for standard aggregation (left) and Lloyd
aggregation with approximately 20 nodes per aggregate (right).

setup we apply a robust strength of connection measure to the matrix [39] to
ensure that only strongly connected neighbors are aggregated. Like the isotropic
results, the standard method requires less work per digit of accuracy, while Lloyd
aggregation can produce smaller hierarchies without significant performance
degradation. Figure 6.9 depicts aggregates for this example.

6.4.4 Dual Meshes

The examples of Sections 6.4.3 and 6.4.3 were discretized by associating basis
functions to the nodes of primal meshes. In this case, the sparsity pattern
of A (and therefore the strength of connection matrix S) is simply the graph
determined by the nodes and edges of the primal mesh. In contrast, scalar
problems that reside on the dual mesh associate basis functions to the top-level
elements, or, equivalently, the centers of the top-level elements. The sparsity
structure of the dual problem is the same as the dual graph of the mesh, i.e.
an edge exists between pairs of top-level elements that share a common face.

60

Figure 6.10: Standard aggregates (left) and Lloyd aggregates (right) with 15
nodes per aggregate on the dual mesh.

10
0

10
1

10
2

10
3

Nodes per Aggregate

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

O
p

e
ra

to
r

C
o
m

p
le

xi
ty

Lloyd
Standard

10
0

10
1

10
2

10
3

Nodes per Aggregate

0

2

4

6

8

10

12

14

16

W
o
rk

 p
e
r

D
ig

it

Lloyd
Standard

Figure 6.11: Comparison of aggregation methods on the dual of an unstructured
tetrahedral rocket mesh.

Figure 6.10 illustrates dual mesh aggregates for the two methods.
The sparsity structure of the dual problem is unlike that of the primal.

For instance, the primal problem DT
0 D0 on the unstructured tetrahedral rocket

mesh (cf. Figure 4.4) has an average of 14.1 nonzeros per row (13.1 adjacen-
cies). However, since a tetrahedron has at most 4 adjacencies, the dual problem
D2DT

2 has only 4.9 nonzeros per row (3.9 adjacencies) on average. The limited
size of the 1-ring neighborhoods of the dual mesh severely undermines the se-
lection strategy of the standard aggregation method, leading to high operator
complexities.

Figure 6.11 reports performance figures for the dual system D2DT
2 . Due to

a slow coarsening rate, the standard method’s operator complexity (1.64) is
considerably higher than the scalar problem on the primal mesh. On the other
hand, Lloyd aggregation, which is forced to coarsen at a predefined rate, yields
a more economical hierarchy. Moreover, the Lloyd-based solver achieves a com-
parable, and sometimes better WPD, at substantially lower cost. In particular,

61

the Lloyd result with approximately 55 nodes per aggregate produces the same
WPD as the standard method, with an operator complexity of only 1.07.

6.4.5 Discrete k-forms

Nodal discretizations on the primal mesh (e.g. DT
0 D0) were the subject of Sec-

tions 6.4.2 and 6.4.3. Similarly, nodal discretizations on the dual mesh (e.g.
D2DT

2 in 3D) were examined in Section 6.4.4. In this section, we consider non-
nodal discretizations, such as those where the degrees of freedom are associated
with mesh edges and faces.

Matrices arising in k-form discretizations, like those of mesh duals, have spar-
sity structures which differ substantially from those of standard (primal) nodal
discretizations. This implies that the standard aggregation method performs
poorly on discrete k-form problems. As shown in Figure 6.12, standard aggre-
gates for the discrete 1-form operator DT

1 D1 are small and irregularly shaped.
Together, these properties suggest that multigrid hierarchies produced by the
standard method will exhibit high operator complexities. In contrast, Lloyd
aggregates for the same problem are larger in size and more naturally shaped.
The average aggregate size determines the rate of coarsening and the number of
levels in the multigrid hierarchy. Aggregate shape generally affects the average
number of adjacent aggregates, which determines the sparsity structure of the
Galerkin product PTAP . Therefore, more irregular aggregates generally create
additional fill in the hierarchy while smaller aggregates extend the length of the
hierarchy.

The following numerical results use the methodology laid out in Section 6.4.1
with the exception that Lloyd aggregation is used only on the first level of
aggregation. As discussed in Section 5.2, the coarse basis functions produced by
the kSA method, which resemble vector-valued nodal discretizations on coarser
meshes, are appropriate candidates for standard aggregation.

Figures 6.13 and 6.14 report performance results for the k-form problems
DT

1 D1 and DT
2 D2 on a regular hexahedral mesh with 253 elements. In the 1-form

case, the standard method’s operator complexity of 2.51 is substantially higher
than Lloyd aggregation with 50 or more nodes per aggregate. For instance, the
Lloyd result with 100 nodes per aggregate has an operator complexity of 1.19
while requiring 28% less work per digit of accuracy. In the 2-form problem,
the performance disparity between the aggregation methods grows even larger
Compared to the standard method, Lloyd aggregation with 100 nodes per ag-
gregate is more than three times faster, while maintaining a modest operator
complexity.

As shown by Figures 6.15 and 6.16, the relative performance of the two
methods carries over to unstructured meshes. Again, Lloyd aggregation with
100 or more nodes per aggregate offers a favorable balance between low operator
complexity and work per digit of accuracy. Furthermore, modifying the rate of

62

Figure 6.12: Standard aggregates (upper left) and Lloyd aggregates with an
average of 20 (upper right), 30 (lower left), and 50 (lower right) nodes per
aggregate for the 1-form operator DT

1 D1.

10
0

10
1

10
2

10
3

Nodes per Aggregate

1.0

1.5

2.0

2.5

O
p

e
ra

to
r

C
o
m

p
le

xi
ty

Lloyd
Standard

10
0

10
1

10
2

10
3

Nodes per Aggregate

0

2

4

6

8

10

12

W
o
rk

 p
e
r

D
ig

it

Lloyd
Standard

Figure 6.13: Comparison of aggregation methods on the discrete 1-form operator
DT

1 D1 of a regular hexahedral mesh.

63

10
0

10
1

10
2

10
3

Nodes per Aggregate

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

O
p

e
ra

to
r

C
o
m

p
le

xi
ty

Lloyd
Standard

10
0

10
1

10
2

10
3

Nodes per Aggregate

0

2

4

6

8

10

12

14

16

18

W
o
rk

 p
e
r

D
ig

it

Lloyd
Standard

Figure 6.14: Comparison of aggregation methods on the discrete 2-form operator
DT

2 D2 of a regular hexahedral mesh.

10
0

10
1

10
2

10
3

Nodes per Aggregate

1.0

1.5

2.0

2.5

3.0

O
p

e
ra

to
r

C
o
m

p
le

xi
ty

Lloyd
Standard

10
0

10
1

10
2

10
3

Nodes per Aggregate

0

5

10

15

20
W

o
rk

 p
e
r

D
ig

it
Lloyd
Standard

Figure 6.15: Comparison of aggregation methods on the discrete 1-form operator
DT

1 D1 of an unstructured tetrahedral rocket mesh.

10
0

10
1

10
2

10
3

Nodes per Aggregate

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

O
p

e
ra

to
r

C
o
m

p
le

xi
ty

Lloyd
Standard

10
0

10
1

10
2

10
3

Nodes per Aggregate

0

5

10

15

20

25

W
o
rk

 p
e
r

D
ig

it

Lloyd
Standard

Figure 6.16: Comparison of aggregation methods on the discrete 2-form operator
DT

2 D2 of an unstructured tetrahedral rocket mesh.

64

coarsening remains an effective way to reduce setup and memory cost without
substantially reducing cycle efficiency.

65

Chapter 7

Hodge Decomposition

The Hodge decomposition [1, 22] states that the space of k-forms on a closed
manifold can be decomposed into three orthogonal subspaces,

Ωk = dk−1Ωk−1 ⊕ δk+1Ωk+1 ⊕Hk, (7.1)

where Hk is the space of harmonic k-forms, Hk = {h ∈ Ωk|∆kh = 0}. Here,
δk+1 denotes the codifferential operator δk+1 : Ωk+1 → Ωk which is defined by
adjointness to dk,

<dkα
k, βk+1>=<αk, δk+1β

k+1> . (7.2)

This chapter introduces the discrete Hodge decomposition and its applica-
tions. We demonstrate how the multigrid methods discussed in Chapters 4 and
5 are applied to compute Hodge decompositions in the special case Mk = I. A
method for computing decompositions in the general case is also presented.

7.1 Discrete Hodge Decomposition

For a discrete k-form ωk, we seek a decomposition of the form,

ωk = Dk−1α
k−1 + M−1

k DT
k Mk+1β

k+1 + hk, (7.3)

for some αk−1 ∈ Ωk−1
d , βk+1 ∈ Ωk+1

d , and hk ∈ Ωk
d where ∆khk = 0. Here, the

derived codifferential [10]
M−1

k−1DT
k−1Mk, (7.4)

is defined to be the adjoint of Dk−1 in the discrete innerproduct Mk. Note
that αk−1 and βk+1 are generally not unique, since the kernels of Dk−1 and
M−1

k DT
k Mk+1 are non-empty. However, the discrete k-forms (Dk−1α

k−1) and
(M−1

k DT
k Mk+1β

k+1) are uniquely determined. We decompose ωk into (7.3) by
solving

(
DT

k−1MkDk−1

)
αk−1 = DT

k−1Mkω
k, (7.5)(

DkM−1
k DT

k

)
Mk+1β

k+1 = Dkω
k, (7.6)

hk = ωk − Dk−1α
k−1 −M−1

k DT
k Mk+1β

k+1. (7.7)

66

Note that (7.6) involves the explicit inverse M−1
k which is typically dense1. In

the following sections, we first consider the special case Mk = I and then show
how (7.6) can be circumvented in the general case. Equation (7.5) is obtained
by left multiplying Mk−1DT

k−1Mk on both sides of (7.3). Likewise, applying Dk

to both sides of (7.3) yields (7.6). Equivalently, solutions to (7.5) and (7.6)
minimize the functionals

Z1 =
∣∣∣∣∣∣∣∣Dk−1α

k−1 − ωk

∣∣∣∣∣∣∣∣
Mk

, (7.8)

Z2 =
∣∣∣∣∣∣∣∣M−1

k DT
k Mk+1β

k+1 − ωk

∣∣∣∣∣∣∣∣
Mk

, (7.9)

respectively. Intuitively, a minimizer of (7.8) is a (k−1)-form whose derivative is
closest to ωk in the Mk norm. Likewise, the discrete codifferential of a minimizer
of (7.9) is the Mk-orthogonal projection of ωk onto the range of M−1

k DT
k Mk+1.

Convergence of the discrete approximations to the Hodge decomposition is ex-
amined in [18].

7.2 Applications

The Hodge decomposition is a fundamental tool in both pure and applied math-
ematics. For instance, in the context of fluid simulation, the Hodge decompo-
sition provides a means to enforce incompressibility. When representing fluid
flow as a discrete 2-form ω2 ∈ Ω2

d, the divergence of the flow is D2ω
2. There-

fore, an incompressible, or divergence-free flow satisfies D2ω
2 = 0 ∈ Ω3

d. Since,
in the course of a numerical simulation the fluid flow drifts from the space of
divergence-free flows, it is necessary to project the offending component out of
the solution. Applying D2 to the discrete Hodge decomposition (7.3) of ω2,

D2ω
2 = D2D1α

1 + D2M−1
2 DT

2 M3β
3 + D2h

2, (7.10)

= D2M−1
2 DT

2 M3β
3, (7.11)

exposes the offending component. Solving for β3 and then subtracting the
2-form M−1

2 DT
2 M3β

3 from ω2 projects the solution back onto the space of in-
compressible flows. This approach is discussed in the work of Elcott et al. [20].

The visualization of flows [36, 41] is another application of the Hodge de-
composition. In complex flows, visualizing each of the three components of the
decomposition individually illuminates characteristics that are hidden in a single
visualization of the composite.

Furthermore, the Hodge decomposition reveals topological information via
differential forms. For example, the two harmonic 1-forms shown in Figure 7.1
exist because the manifold has genus 1. As discussed in Chapter 8, this relation-
ship is utilized in the coordinate-free approach to the sensor network coverage

1The covolume Hodge star is a notable exception.

67

Figure 7.1: The two harmonic 1-forms of a rocker arm surface mesh.

68

problem.

7.3 Special Case

Taking the appropriate identity matrix for all discrete innerproducts Mk in (7.5)
- (7.7) yields

DT
k−1Dk−1α

k−1 = DT
k−1ω

k, (7.12)

DkDT
k β

k+1 = Dkω
k, (7.13)

hk = ωk − Dk−1α
k−1 − DT

k β
k+1. (7.14)

Equation 7.12 is solved by applying either the cSA method (cf. Chapter 4) or
the kSA method (cf. Chapter 5) to the matrix DT

k−1Dk−1. Similarly, either
method is applied to (7.13) to compute βk+1.

Although (7.12) - (7.14) are devoid of metric information, some fundamental
topological properties of the mesh are retained. For instance, the number of
harmonic k-forms, which together form a cohomology basis, is independent of
the choice of innerproduct2. In applications where metric information is either
irrelevant or simply unavailable[16] these “nonphysical” equations are sufficient.

7.4 General Case

Problems discretized with mimetic finite elements such as Whitney forms [45]
give rise to non-trivial discrete innerproducts Mk. Equation 7.5 of the general
discrete Hodge decomposition, in which the matrix DT

k−1MkDk−1 appears, is
straightforward to solve with either the cSA or kSA methods. However, a dif-
ferent strategy is needed to solve (7.6) since M−1

k is generally dense and cannot
be formed explicitly. In the following, we outline a method for computing Hodge
decompositions in the general case.

We first remark that if a basis for the space of Harmonic k-forms, Hk =
span{hk

0 , h
k
1 , . . . h

k
m}, is known, then the harmonic component hk of the Hodge

Decomposition is easily computed by projecting ωk onto the basis elements,

hk = H(HT MkH)−1HT Mkω
k, (7.15)

where Hk = [hk
0 , h

k
1 , . . . h

k
m] denotes the matrix of harmonic k-forms. Further-

more, since (7.5) is solved by cSA or kSA, the value of the remaining component
(ωk −Dk−1α

k−1 − hk), is easily computed. This vector must lie in the range of
M−1

k DT
k Mk+1 due to orthogonality of the three spaces.

Therefore, the task of computing general Hodge Decompositions is reduced
to computing a basis for Hk. Sometimes a basis is known a priori. For instance,
H0 which corresponds to the nullspace of the pure-Neumann scalar problem,

2In the case M = I, the cohomology basis is also a homology basis.

69

is spanned by constant vectors on each connected component of the domain.
Furthermore, if the domain is contractible then Hk = {} for k > 0. However,
in many cases of interest we cannot assume that a basis for Hk is known, and
therefore it must be computed.

The cSA and kSA solvers are sufficient to determine a Harmonic k-form
basis for the identity innerproduct. By decomposing randomly generated k-
forms until their respective harmonic components become linearly dependent,
a basis, denoted {hk

0 , h
k
1 , . . . h

k
m}, with span Hk is formed. Using {hk

i }mi=0, a
basis for the harmonic k-forms with a general innerproduct Mk is produced by
solving

DT
k−1MkDk−1α

k−1
i = DT

k−1Mkhk
i , (7.16)

hk
i = hk

i − Dk−1α
k−1
i . (7.17)

It is readily verified that hk
0 , . . . , h

k
m are harmonic,

Dkh
k
i = Dkhk

i − DkDk−1α
k−1
i , (7.18)

= 0− 0 = 0, (7.19)

since DkDk−1 = 0 and Dkhk
i = 0 by assumption, and

M−1
k−1DT

k−1Mkh
k
i = M−1

k−1(DT
k−1Mkhk

i − DT
k−1MkDk−1α

k−1
i), (7.20)

= M−1
k−1(0) = 0, (7.21)

by Equation 7.16. It remains to be shown that hk
0 , . . . , h

k
m are linearly indepen-

dent.
Suppose otherwise that hk

0 , . . . , h
k
m are linearly dependent, then there exist

scalars c0, . . . , cH not all zero such that

0 =
m∑

i=0

cih
k
i ,

=
m∑

i=0

ci(hk
i − Dk−1α

k−1
i),

=
m∑

i=0

cihk
i −

m∑
i=0

ciDk−1α
k−1
i ,

which is a contradiction, since
(∑m

i=0 cih
k
i

)
∈ Hk is nonzero andHk ⊥ R(Dk−1).

Note: In general, harmonic forms hk
0 , . . . , h

k
m are not the same as the harmonic

components of the random k-forms used to produce hk
0 , . . . h

k
m.

70

Figure 7.2: Initial harmonic basis.

Figure 7.3: Localized harmonic basis.

7.5 Transforming Harmonic Bases

The discrete Hodge decomposition produces a basis for the harmonic k-forms,
Hk = [hk

0 , h
k
1 , . . . h

k
m], using the approach discussed in Section 7.4. Although

hk
0 , . . . h

k
m span a basis, the basis vectors do not generally correspond to the

most “natural” or “intuitive” representations of the individual features of the
manifold. For example, the two harmonic 1-forms illustrated in Figure 7.2
extend across the entire mesh. In contrast, the vectors of an equivalent basis,
illustrated in Figure 7.3, localize near the holes of the mesh. In this section we
introduce a heuristic that transforms harmonic bases into equivalent, localized
bases.

Beginning with an orthonormal set of harmonic basis vectors stored colum-
nwise in the matrix H, Algorithm 7.1 applies Householder transformations [26]
to localize the basis. For a given column of the matrix, the heuristic first
identifies the element with maximum magnitude and then constructs a House-

71

Algorithm 7.1: localize basis(H,m)

1 for j = 0 to m
2 i ⇐ argmax (abs (H [: , j]))
3 v ⇐ H [: , j]
4 i f H [i ,j] > 0 :
5 v [j] ⇐ v [j] + norm(v)
6 else
7 v [j] ⇐ v [j] − norm(v)
8 end
9 Q ⇐ eye (m) − 2 ∗ outer (v ,v) / inner (v ,v)

10 H ⇐ HQ
11 end
12 return H

holder transformation, denoted Q, to annihilate the corresponding elements in
the other columns of H. Intuitively, this procedure pulls spatially overlapping
vectors apart at the points where a specific vector takes its maximum value. Fig-
ures 7.2 and 7.3 illustrate the basis before and after the localization procedure
respectively.

72

Chapter 8

Sensor Networks

Given a network of sensors — e.g. small devices capable of locally monitoring
local phenomena or events — a common challenge is to identify holes in the
sensor network coverage. If the sensors are equipped with a positioning device
(e.g. GPS) then the coverage problem reduces to a problem of computational
geometry. However, in many cases of interest, the use of positioning hardware
may be impractical or too costly. Therefore coordinate-free solutions to the
coverage problem are desirable.

The coordinate-free approach develops sufficient, but not necessary, con-
ditions for network coverage [16, 33]. We assume that all sensors have fixed
coverage radius rc and broadcast radius1 rb such that rc ≥ rb/

√
3. Under these

assumptions, the difficult geometric problem is replaced with a more-readily
computable topological problem: finding a homology basis of the Rips com-
plex defined by the network [40]. Furthermore, the coordinate free approach
requires only pairwise communication among the sensors. Figure 8.1 illustrates
the broadcast radii and Rips complex for a small network of sensors.

In the remainder of this section we discuss the construction of the Rips
complex and its associated combinatorial Laplacian operator. We then examine
previous numerical methods that have been used to compute homology bases.
Finally, we extend our multigrid framework to compute the same homology
basis in an efficient and scalable manner.

8.1 Rips Complex

The Rips complex, or Vietoris-Rips complex, is an abstract simplicial complex.
Like the de Rham complex (cf. Section 3.2), the Rips complex is equipped with
boundary operators ∂0, . . . , ∂N relating simplices to their faces. However, unlike
the de Rham complex, which is typically constructed in a top-down fashion from
a set of top-level elements (e.g. tetrahedra), the higher-dimensional simplices of
the Rips complex are built by recursively combining lower dimensional simplices.

Consider the sensor network illustrated in Figure 8.2 with 300 samples from
the unit square. For each pair of points at most rc distance apart, an edge
is included in the complex. Figure 8.3 demonstrates the graph for the case

1A sensor communicates with all other sensors within this distance

73

Figure 8.1: Broadcast radii and Rips complex for a sensor network.

74

Figure 8.2: Sample sensor network with randomly distributed points.

rc = 0.15. The boundary operator ∂1 depends on edge orientation, and we
(arbitrarily) choose indices in sorted order: (s0, s1) where s0 < s1.

Once the edges of the Rips complex have been chosen, the higher-dimensional
simplices are fully determined. A triangle (s0, s1, s2) is added to the Rips com-
plex if and only if all three boundary edges ((s0, s1), (s1, s2) and (s0, s2)) are
present in the edge set. In general, a p-simplex is added to the Rips complex
when all of its boundary (p− 1)-faces are present in the complex. Equivalently,
each complete graph of p + 1 nodes in the edge set forms a p-simplex of the
Rips complex. In the sensor network problem, it is only necessary to consider
p up to the dimension of the embedding space. The Rips complex triangles
(2-simplices) for our two dimensional example are shown in Figure 8.4. As with
edges, the orientation of higher dimensional p-simplices is chosen arbitrarily.
With the boundary operators ∂0, . . . , ∂N determined, we turn our attention to
the homology groups of the Rips complex.

8.2 Homology Bases

In order to discover coverage “holes”, the coordinate-free approach considers
topological properties of the Rips complex which are exposed by the combina-
torial Laplacians

∆k = ∂T
k ∂k + ∂k+1∂

T
k+1 (8.1)

75

Figure 8.3: Rips complex edge connectivity: Pairs of points within a fixed
distance of one another are connected by an edge.

Figure 8.4: Triangles are added to the Rips complex when three points form a
clique (complete graph).

76

Figure 8.5: The existence of a harmonic 1-form indicates a potential hole in the
sensor network coverage. Edge thickness reflects the magnitude of harmonic
form on each edge.

derived from the complex [40, 33]. Ultimately, the problem reduces to finding
a nullspace basis of the appropriate combinatorial Laplacian for a given spatial
dimension. The absence of null-vectors (or harmonic forms) to the combinatorial
Laplacian indicates that the Rips complex is free of holes. Conversely, the
presense of null-vectors indicates the presence of holes in the Rips complex.
However, holes in the Rips complex do not necessarily imply gaps in network
coverage.

Consider the (sparse) matrix ∆0 = ∂T
0 ∂0 +∂1∂

T
1 . Since ∂0 is the zero matrix,

∆0 = ∂1∂
T
1 is precisely the graph Laplacian of the Rips complex. A well-known

property of the graph Laplacian is that its nullspace basis has precisely one
vector for each connected component of the graph. Therefore, the (somewhat
trivial) problem of counting graph components reduces to finding a null-basis
of ∆0.

In the context of sensor networks, the combinatorial Laplacian of interest is
∆1 in two dimensions and ∆2 in three dimensions. Continuing our example, we
consider the nullspace of ∆1 for the Rips complex shown in Figure 8.4. Since
the visual representation of the complex has one hole we expect to find a single
harmonic form. This vector, which has a scalar value for each edge of the
complex, is shown in Figure 8.5. In general, a two dimensional complex with K
holes has K harmonic 1-forms. Similarly, a three dimensional complex with K

holes, or voids, has K harmonic 2-forms, or nullvectors of ∆2.

77

8.3 Numerical Methods

We now consider numerical methods finding nullspace bases of ∆K . Muhammad
and Egerstedt [33] pose the problem as a dynamical system with steady states
corresponding to harmonic forms. Specifically, a random vector ωk is evolved
in fictitious time by the equation

∂ω

∂t
= −∆kω

k. (8.2)

Numerical integration of a forward-Euler time discretization of Equation 8.2 is
equivalent to applying Richardson iteration to the linear system

∆kω
k = 0, (8.3)

with the same initial vector. Although this approach is simple and naturally
parallelizes over the sensor network, the slow rate of convergence results in a
large number of iterations.

In [23], the Power Method is applied to produce null-vectors of the com-
binatorial Laplacian. Like the dynamical system approach, this method also
corresponds to Richardson iteration on (8.3) and therefore exhibits the same
convergence.

Standard iterative methods with better convergence behavior than Richard-
son iteration exist. For instance, conjugate gradient iteration (CG) or the MIN-
RES method [35] on the positive semi-definite system (8.3) converges to the
nullspace component of the initial starting vector. Although these methods con-
verge to an approximate solution in fewer iterations than Richardson’s method,
each iteration requires a vector innerproduct, which in the context of sensor
networks, necessitates a global reduction operation. However, since the cost of
a global reduction is significant, perhaps proportional to the diameter of the
network, methods that converge in fewer iterations are not necessarily faster.

8.4 Proposed Method

Like the approaches described in Section 8.3, we iteratively solve Equation 8.3
with a random initial vector to produce a nullvector of ∆k. We use the MIN-
RES method [35] with an adaptive kSA preconditioner (cf. Section 5.6). As
a black-box solver, the adaptive kSA method requires no coordinate informa-
tion. Although both the preconditioner and the outer MINRES iteration require
global reductions at each iteration, the number of required iterations is small.

78

Figure 8.6: Distribution of 200 points produced by repulsion method.

8.5 Numerical Results

Since no established manner of simulating the distribution of points in real-
world sensor networks exists, we propose a straightforward ad hoc approach.
Beginning with a set of N points uniformly distributed from the unit square
(or cube), a repulsive force pushes nearby points apart. The i-th point, with
coordinate vector vi, is integrated through fictitious time according to the ODE

∂vi

∂t
=

∑
j∈BR(vi),i6=j

(
1− ||vi − vj ||

R

)2
vi − vj

||vi − vj ||
, (8.4)

where R > 0 denotes a given radial distance, and BR(vi) the ball of radius R
about the point vi. Intuitively, Equation 8.4 repels all points within distance R,
with a magnitude that approaches zero as the separation approaches R. In our
implementation, R is 2 D

√
1.0/N , where D is the dimension of the space, and 30

steps of Forward Euler integration are used to advance Equation 8.4 through
time. As shown by Figure 8.6, the resulting points are evenly distributed.

In order to test the scalability of the proposed method, we use the repulsion
method to produce distributions with between 100 and 100,000 points in both
two and three dimensions. In each case, we compute the Rips complex for
the broadcast radius rb = 2 D

√
1.0/N , the same distance used in the repulsion

model. Figure 8.7 illustrates the Rips complex for the point distribution shown
in Figure 8.6 with this choice of rb.

In this section we report performance figures for the proposed method ap-
plied to matrices ∆1 and ∆2. Unless stated explicitly, we apply the same testing
methodology used in Section 5.6. For the purposes of comparison we retain the

79

Figure 8.7: Rips complex for 200 points produced by the repulsion method.

System Pts Unknowns Convergence WPD OC Lvls

∆1

100 377 0.220 6.369 1.046 2
200 810 0.289 8.355 1.125 2
500 2,366 0.299 9.151 1.198 2

1,000 4,858 0.349 10.862 1.239 2
2,000 10,701 0.321 10.551 1.301 2
5,000 27,786 0.326 11.150 1.357 3

10,000 56,291 0.362 12.546 1.383 3
20,000 114,305 0.397 14.073 1.408 3
50,000 288,857 0.419 15.085 1.421 4

100,000 580,157 0.475 17.608 1.421 4

Table 8.1: Solver performance on hole-free sensor networks in 2D.

use of symmetric Gauss-Seidel for pre- and post-smoothing. In practice, a par-
allel smoother [3] is more appropriate for this application.

Table 8.1 reports numerical results for the proposed method on a series of
two-dimensional, hole-free sensor networks. In each case, six candidates were
used during the adaptive setup phase. Each first-level aggregate, computed with
Lloyd aggregation, consists of an average of 150 unknowns. The ‘Pts’ column of
Table 8.1 refers to the number of sensors in the network while ‘Unknowns’ refers
to the number of edges in the complex. As the number of points is increased
there is a modest rise in the rate of convergence and overall work per digit of
accuracy. While convergence of the method is not independent of problem size,
it does not substantially deteriorate.

The three dimensional results in Table 8.2 exhibit similar dependence on
problem size. However, as in the previous case, the degradation in performance

80

System Points Unknowns Convergence WPD OC Lvls

∆1

100 534 0.176 5.344 1.005 2
200 1,323 0.248 6.623 1.002 2
500 4,113 0.296 7.641 1.007 2

1,000 9,721 0.335 8.543 1.012 2
2,000 21,630 0.354 9.103 1.025 2
5,000 60,525 0.385 10.085 1.043 2

10,000 129,371 0.376 10.017 1.063 3
20,000 272,599 0.388 10.428 1.070 3
50,000 717,259 0.441 12.232 1.086 3

100,000 1,481,416 0.430 11.969 1.094 3

∆2

100 890 0.221 6.140 1.005 2
200 2,697 0.303 7.732 1.001 2
500 10,280 0.373 9.400 1.005 2

1,000 28,494 0.408 10.391 1.009 2
2,000 69,621 0.440 11.409 1.015 2
5,000 215,366 0.466 12.427 1.027 2

10,000 488,461 0.483 13.122 1.035 3
20,000 1,077,654 0.496 13.724 1.042 3
50,000 2,961,027 0.517 14.645 1.047 3

100,000 6,292,204 0.541 15.767 1.051 3

Table 8.2: Solver performance on hole-free sensor networks in 3D.

is subtle. Since the number of unknowns per point is larger in three dimensions,
more rapid coarsening has been used. First level aggregates consist of (on av-
erage) 500 and 2500 unknowns in the 1-form and 2-form problems respectively.
Six candidates are used in the adaptive setup phase in all tests. Although the
1-form problem ∆1 is not needed to determine sensor coverage in 3D, results
are included for completeness.

Although the Rips complex is a collection of simplices which connect points
in close proximity, the structure of the Rips complex is unlike that of a standard
finite-element mesh. For instance, the tetrahedral rocket mesh displayed in Fig-
ure 4.4 has an average of 5.3 tetrahedra per vertex while the three-dimensional
Rips complex with 100,000 points has 121.4 tetrahedra per vertex. Redundant
overlaps, such as those in Figure 8.4, are responsible for the large number of
higher-dimensional simplices.

While, in the cases presented, the proposed method is sensitive to problem
size, it represents a profound improvement over the previously applied numerical
methods discussed in Section 8.3. Figure 8.8 compares the convergence behav-
ior of the proposed method to other iterative solvers on the two-dimensional
network with 100,000 points. Richardson iteration, which is equivalent to the
approaches of [33] and [23], converges very slowly. Though, on a per-iteration ba-
sis, (non-preconditioned) conjugate gradient iteration improves on Richardson’s
method, both solvers remain substantially slower than the proposed multigrid
method.

81

0 200 400 600 800 1000
Iteration

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e
si

d
u

a
l

N
o
rm

Multigrid
Conjugate Gradient
Richardson

Figure 8.8: Convergence history of several iterative methods applied to a hole-
free two-dimensional sensor network with 100,000 points in 2D. The proposed
multigrid method reduces the residual norm ||b−Ax|| by 10 orders of magnitude
in 31 iterations. Richardson iteration and the conjugate gradient method fail to
reach the same threshold within 1000 iterations.

82

Figure 8.9: Sensor networks with an increasing number of coverage holes.

We now consider solver performance on sensor networks with one or more
coverage holes. The following data sets are constructed from the two and three-
dimensional sensor networks with 10,000 points by removing points within cer-
tain regions of the domain. Figure 8.9 illustrates the patterns used in two
dimensions. A similar pattern is applied in the three-dimensional case.

Table 8.3 reports the performance of the proposed method in two dimensions
with 1, 2, 4, 9 and 16 holes. For comparison, figures for the hole-free sensor
network (cf. Table 8.1) are included. As the number of holes is increased, the
convergence ratio and work per digit of accuracy remain steady. Therefore, in
the tests considered, the proposed method is insensitive to the presence of holes.
Figure 8.10 illustrates several candidate vectors produced by the adaptive setup
phase on a Rips complex with four holes. The candidates are consistent with of
our expectations regarding the nullspace of ∆1.

Performance results of the three-dimensional sensor networks with 1, 8, 27,
and 64 holes, or voids, are listed in Table 8.4. The presence of holes yields a
modest degradation in convergence and work per digit of accuracy in the ∆1

tests. On the other hand, solver performance on the ∆2 system is insensitive to
the topology of the complex. Again, only the 2-form problem is needed in the

83

System Holes Pts Unknowns Convergence WPD OC Lvls

∆1

02 10,000 56,291 0.362 12.546 1.383 3
12 8,888 49,370 0.310 12.177 1.547 3
22 8,358 45,467 0.310 11.872 1.506 3
32 8,167 44,219 0.329 12.215 1.471 3
42 8,043 43,114 0.298 11.009 1.446 3

Table 8.3: Solver performance on 2D sensor networks in with holes.

Figure 8.10: Candidate vectors computed during the adaptive setup phase.

84

System Holes Pts Unknowns Convergence WPD OC Lvls

∆1

03 10,000 129,371 0.376 10.017 1.063 3
13 9,664 122,784 0.340 9.004 1.054 3
23 9,117 111,555 0.353 9.306 1.051 3
33 8,478 112,918 0.449 12.120 1.053 3
43 7,924 97,033 0.554 16.358 1.048 3

∆2

03 10,000 488,461 0.483 13.122 1.035 3
13 9,664 457,670 0.425 11.118 1.031 3
23 9,117 430,801 0.445 11.725 1.030 3
33 8,478 360,304 0.376 9.666 1.025 3
43 7,924 298,377 0.475 12.697 1.024 3

Table 8.4: Solver performance on 3D sensor networks with holes.

context of three-dimensional coverage problems.

85

Chapter 9

Conclusions

This thesis develops efficient and scalable numerical solvers for discrete k-form
problems. We summarize the main contributions of the thesis in this chapter.

9.1 Contributions

Development and analysis of cSA. We have described an extension of Re-
itzinger and Schöberl’s methodology [37] to higher dimensional k-forms
with the addition of smoothed prolongation operators. Furthermore, we
have detailed properties of the prolongation operators that arise from this
generalized setting. Specifically we have identified necessary and suffi-
cient conditions under which commutativity is maintained. The prolonga-
tion operators give rise to a hierarchy of compatible finite element spaces.
The generality of the method is appealing since the components are con-
structed independently of a particular mimetic discretization. We have
demonstrated problem-size-independent convergence of the cSA method
in the context of structured meshes.

Development and analysis of kSA. We have introduced the k-form basis
method (kSA) for solving discrete k-form problems. The kSA method im-
proves on cSA by ensuring that the tentative prolongation operators used
in the SA setup procedure reproduce a set of k-form basis functions. As a
result, solver performance for problems on unstructured meshes does not
degrade when a non-trivial innerproduct Mk is introduced. On manifolds
with multiple parameterizations, we have explored the use of different k-
form bases, those that are intrinsic to the manifold and those given by an
embedding. Lastly, we have considered the case of combinatorial Lapla-
cians and an adaptive method based on kSA with which to solve them.

Development and analysis of Lloyd Aggregation. We have demonstrated
that Lloyd aggregation is an effective aggregation algorithm for a variety
of problem discretizations. In the context of dual-mesh and k-form prob-
lems, the standard aggregation algorithm [44], which is tailored for matri-
ces arising in standard (primal) nodal discretizations, is significantly more
costly than Lloyd aggregation. On such problems, Lloyd aggregation-
based solvers require less work per digit of accuracy while maintaining

86

lower operator complexity than the standard method. Lloyd aggrega-
tion supports a time-memory tradeoff between work per digit of accuracy
(WPD) and operator complexity. Although WPD is generally the primary
measure of multigrid performance, the memory constraints of a given plat-
form place a hard constraint on the allowable operator complexity. In this
situation, the ability of Lloyd aggregation to produce hierarchies with ar-
bitrarily low operator complexity is advantageous. Furthermore, the use
of Lloyd aggregation with an aggressive coarsening rate does not lead to
an immediate increase in work per digit of accuracy. Instead, we have
shown that there is a gradual tradeoff between operator complexity and
WPD over a wide range of coarsening rates.

Efficient computation of discrete Hodge decompositions. The discrete
Hodge decomposition is an important tool with numerous applications
in the computational sciences. We have initiated a study of algebraic
multigrid for the Hodge decomposition of discrete k-forms. The direct
application of the cSA and kSA methods is sufficient to compute decom-
positions in the special case Mk = I. Furthermore, we have described
a method to compute decompositions for general innerproducts without
constructing the explicit inverse of Mk.

Efficient determination of sensor network coverage. We have applied the
adaptive kSA methodology to the sensor network coverage problem. Like
previous approaches, the proposed method computes nullvectors of the
combinatorial Laplacian ∆k by solving ∆kω

k = 0 with an iterative solver.
However, our results demonstrate that the adaptive kSA solver converges
to an approximate solution far more rapidly than those of previous ap-
proaches (e.g. Richardson iteration). While the convergence of the pro-
posed method is not independent of network size, the performance degra-
dation is mild, and does not preclude use of the solver in large-scale prob-
lems.

9.2 Closing Remarks

The numerical experiments and results of this thesis were conducted with
PyAMG [7] a collection of algebraic multigrid solvers with a Python inter-
face. PyAMG implements several AMG methods such as classical AMG [38],
smoothed aggregation (SA) [44], and adaptive smoothed aggregation [14]. Since
the components of these methods are modular, PyAMG provides an ideal en-
vironment for rapidly prototyping new multigrid methods. Furthermore, since
costly operations are implemented with natively-compiled programming lan-
guages, large-scale problems are solved efficiently.

87

References

[1] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, Tensor Analysis,
and Applications. Springer–Verlag, New York, second edition, 1988.

[2] M. Adams. A parallel maximal independent set algorithm. Proceedings 5th
copper mountain conference on iterative methods, 1998.

[3] M. Adams, M. Brezina, J. Hu, and R. Tuminaro. Parallel multigrid smooth-
ing: polynomial versus Gauss-Seidel. J. Comput. Phys., 188(2):593–610,
2003.

[4] D. N. Arnold. Differential complexes and numerical stability. In Proceedings
of the International Congress of Mathematicians, Beijing 2002, Volume 1
: Plenary Lectures, 2002.

[5] D. N. Arnold, R. S. Falk, and R. Winther. Multigrid in H(div) and H(curl).
Numer. Math., 85(2):197–217, 2000.

[6] N. Bell and L. Olson. Algebraic multigrid for k-form laplacians. Numerical
Linear Algebra with Applications, 15(2–3):165–185, 2008.

[7] N. Bell, L. Olson, and J. Schroder. PyAMG : Algebraic multigrid solvers
in Python. http://www.pyamg.com/, 2007-.

[8] P. Bochev, J. Hu, C. Siefert, and R. Tuminaro. An Algebraic Multigrid
Approach Based on a Compatible Gauge Reformulation of Maxwells Equa-
tions. 2007.

[9] P. Bochev, C. Siefert, J. Hu, and R. Tuminaro. An algebraic multigrid ap-
proach based on a compatible gauge reformulation of Maxwell’s equations.
2007.

[10] P. B. Bochev and J. M. Hyman. Principles of mimetic discretizations of
differential operators. In D. N. Arnold, P. B. Bochev, R. B. Lehoucq, R. A.
Nicolaides, and M. Shashkov, editors, Compatible Spatial Discretizations,
volume 142 of The IMA Volumes in Mathematics and its Applications,
pages 89–119. Springer, Berlin, 2006.

[11] P. B. Bochev and A. C. Robinson. Matching algorithms with physics:
exact sequences of finite element spaces. In D. Estep and S. Tavener, edi-
tors, Collected Lectures on Preservation of Stability Under Discretization,
chapter 8, pages 145–166. Society for Industrial and Applied Mathematics
(SIAM), 2002.

[12] A. Bossavit. On the numerical analysis of eddy-current problems. Computer
Methods in Applied Mechanics and Engineering, 27(3):303–318, 1981.

88

[13] A. Bossavit. Whitney forms : a class of finite elements for three-dimensional
computations in electromagnetism. IEE Proceedings, 135, Part A(8):493–
500, November 1988.

[14] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and
J. Ruge. Adaptive smoothed aggregation (αsa) multigrid. SIAM Rev.,
47(2):317–346, 2005.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. The MIT Press, September 2001.

[16] V. de Silva and R. Ghrist. Homological Sensor Networks. Notices of the
American Mathematical Society, 54:10–17, 2007.

[17] M. Desbrun, E. Kanso, and Y. Tong. Discrete differential forms for compu-
tational modeling. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses,
pages 39–54, New York, NY, USA, 2006. ACM.

[18] J. Dodziuk. Finite-difference approach to the Hodge theory of harmonic
forms. Amer. J. Math., 98(1):79–104, 1976.

[19] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tessellations:
applications and algorithms. SIAM Review, 41(4):637–676, 1999.

[20] S. Elcott, Y. Tong, E. Kanso, P. Schröder, and M. Desbrun. Stable,
circulation-preserving, simplicial fluids. Unpublished, 2005.

[21] M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe. Design of tangent
vector fields. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, page 56,
New York, NY, USA, 2007. ACM.

[22] T. Frankel. The Geometry of Physics. Cambridge University Press, Cam-
bridge, second edition, 2004. An introduction.

[23] J. Friedman. Computing Betti Numbers via Combinatorial Laplacians.
Algorithmica, 21(4):331–346, 1998.

[24] V. Gradinaru and R. Hiptmair. Whitney Elements on Pyramids. Electronic
Transactions on Numerical Analysis, 8:154–168, 1999.

[25] X. Gu and S.-T. Yau. Global conformal surface parameterization. In
L. Kobbelt, P. Schröder, and H. Hoppe, editors, Eurographics Symposium
on Geometry Processing. Eurographics, 2003.

[26] M. T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill,
second edition, 2002.

[27] R. Hiptmair. Multigrid method for maxwell’s equations. SIAM J. Numer.
Anal., 36(1):204–225, 1999.

[28] A. N. Hirani. Discrete Exterior Calculus. PhD thesis, California Institute
of Technology, May 2003.

[29] J. J. Hu, R. S. Tuminaro, P. B. Bochev, C. J. Garasi, and A. C. Robin-
son. Toward an h-independent algebraic multigrid method for Maxwell’s
equations. SIAM Journal on Scientific Computing, 27:1669–1688, 2006.

[30] S. Lloyd. Least squares quantization in PCM. Information Theory, IEEE
Transactions on, 28(2):129–137, 1982.

89

[31] M. Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM J. Comput., 15(4):1036–1055, 1986.

[32] J. Mandel, M. Brezina, and P. Vaněk. Energy optimization of algebraic
multigrid bases. Computing, 62(3):205–228, 1999.

[33] A. Muhammad and M. Egerstedt. Control Using Higher Order Laplacians
in Network Topologies. Proc. of 17th International Symposium on Mathe-
matical Theory of Networks and Systems, Kyoto, Japan, pages 1024–1038,
2006.

[34] R. A. Nicolaides and K. A. Trapp. Covolume discretization of differential
forms. In D. N. Arnold, P. B. Bochev, R. B. Lehoucq, R. A. Nicolaides,
and M. Shashkov, editors, Compatible Spatial Discretizations, volume 142
of The IMA Volumes in Mathematics and its Applications. Springer, Berlin,
2006.

[35] C. Paige and M. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM Journal on Numerical Analysis, 12(4):617–629, 1975.

[36] K. Polthier and E. Preuss. Identifying vector field singularities using a
discrete hodge decomposition. In H. C. Hege and K. Polthier, editors,
Visualization and Mathematics, VisMath. Springer–Verlag, 2002.

[37] S. Reitzinger and J. Schöberl. An algebraic multigrid method for finite
element discretizations with edge elements. Numer. Linear Algebra Appl.,
9:223–238, 2002.

[38] J. W. Ruge and K. Stüben. Algebraic multigrid. In Multigrid methods,
volume 3 of Frontiers Appl. Math., pages 73–130. SIAM, Philadelphia, PA,
1987.

[39] J. Schroder. A General Strength-of-Connection Concept in AMG. Tenth
Copper Mountain Conference on Iterative Methods, 2008.

[40] V. D. Silva and R. Ghrist. Coordinate-free coverage in sensor networks with
controlled boundaries via homology. Int. J. Rob. Res., 25(12):1205–1222,
2006.

[41] Y. Tong, S. Lombeyda, A. N. Hirani, and M. Desbrun. Discrete multiscale
vector field decomposition. ACM Transactions on Graphics (Special issue
of SIGGRAPH 2003 Proceedings), 22(3):445–452, July 2003.

[42] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Academic
Press, 1 edition, 2000.

[43] E. Vanderzee, A. N. Hirani, E. Ramos, and D. Guoy. Well-centered mesh-
ing. In preparation, 2006.

[44] P. Vaněk, J. Mandel, and M. Brezina. Algebraic Multigrid by Smoothed
Aggregation for Second and Fourth Order Elliptic Problems. Computing,
56(3):179–196, 1996.

[45] H. Whitney. Geometric Integration Theory. Princeton University Press,
Princeton, N. J., 1957.

[46] K. S. Yee. Numerical solution of initial boundary value problems involving
Maxwells equations in isotropic media. IEEE Transactions on Antennas
and Propagation, AP-14(3):302–307, May 1966.

90

Curriculum Vitae

Research Interests

Multigrid methods for discrete differential forms, discrete Hodge decomposi-
tions, computational homology/cohomology, and iterative methods for linear
systems.

Education

University of Illinois at Urbana-Champaign, Urbana, Illinois

Ph.D. Computer Science, August 2008

Georgia Institute of Technology, Atlanta, Georgia

B.S. Computer Science, August 2003

B.S. Discrete Mathematics, August 2003

Publications

Algebraic Multigrid for k-form Laplacians

Nathan Bell and Luke Olson

Numerical Linear Algebra with Applications, 15:2-3, 165-185, 2008.

Particle-Based Simulation of Granular Materials

Nathan Bell, Yizhou Yu, and Peter J. Mucha

ACM SIGGRAPH Symposium on Computer Animation 2005

A Fast Multigrid Algorithm for Mesh Deformation

Lin Shi, Yizhou Yu, Nathan Bell and Wei-Wen Feng

ACM Transactions on Graphics, Proceedings of SIGGRAPH 2006

91

Honors and Awards

Outstanding Teaching Assistant

Department of Computer Science

University of Illinois at Urbana-Champaign, Spring 2006

Best Paper

ACM SIGGRAPH Symposium on Computer Animation 2005

Incomplete List of Teachers Ranked as Excellent

University of Illinois at Urbana-Champaign, Spring 2004

Employment

NVIDIA Corporation, Santa-Clara, California

Research Intern

University of Illinois at Urbana-Champaign, Urbana, Illinois

Teaching Assistant

Landauer Incorporated, Glenwood, IL

Research and Development Intern

Software Contributions

PyAMG

Algebraic Multigrid Solvers in Python

http://www.pyamg.com/

SciPy

Open-source software for mathematics, science, and engineering

http://www.scipy.org/

92

